File size: 4,035 Bytes
df8265c fb60133 df8265c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
---
base_model: bigscience/bloomz-mt
datasets:
- bigscience/xP3mt
language:
- ak
- ar
- as
- bm
- bn
- ca
- code
- en
- es
- eu
- fon
- fr
- gu
- hi
- id
- ig
- ki
- kn
- lg
- ln
- ml
- mr
- ne
- nso
- ny
- or
- pa
- pt
- rn
- rw
- sn
- st
- sw
- ta
- te
- tn
- ts
- tum
- tw
- ur
- vi
- wo
- xh
- yo
- zh
- zu
library_name: transformers
license: bigscience-bloom-rail-1.0
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/bigscience/bloomz-mt
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [PART 1](https://huggingface.co/mradermacher/bloomz-mt-GGUF/resolve/main/bloomz-mt.Q2_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/bloomz-mt-GGUF/resolve/main/bloomz-mt.Q2_K.gguf.part2of2) | Q2_K | 68.2 | |
| [PART 1](https://huggingface.co/mradermacher/bloomz-mt-GGUF/resolve/main/bloomz-mt.Q3_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/bloomz-mt-GGUF/resolve/main/bloomz-mt.Q3_K_S.gguf.part2of2) | Q3_K_S | 78.8 | |
| [PART 1](https://huggingface.co/mradermacher/bloomz-mt-GGUF/resolve/main/bloomz-mt.Q3_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/bloomz-mt-GGUF/resolve/main/bloomz-mt.Q3_K_M.gguf.part2of2) | Q3_K_M | 94.5 | lower quality |
| [PART 1](https://huggingface.co/mradermacher/bloomz-mt-GGUF/resolve/main/bloomz-mt.Q4_K_S.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/bloomz-mt-GGUF/resolve/main/bloomz-mt.Q4_K_S.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/bloomz-mt-GGUF/resolve/main/bloomz-mt.Q4_K_S.gguf.part3of3) | Q4_K_S | 103.1 | fast, recommended |
| [PART 1](https://huggingface.co/mradermacher/bloomz-mt-GGUF/resolve/main/bloomz-mt.Q6_K.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/bloomz-mt-GGUF/resolve/main/bloomz-mt.Q6_K.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/bloomz-mt-GGUF/resolve/main/bloomz-mt.Q6_K.gguf.part3of3) | Q6_K | 147.7 | very good quality |
| [PART 1](https://huggingface.co/mradermacher/bloomz-mt-GGUF/resolve/main/bloomz-mt.Q8_0.gguf.part1of4) [PART 2](https://huggingface.co/mradermacher/bloomz-mt-GGUF/resolve/main/bloomz-mt.Q8_0.gguf.part2of4) [PART 3](https://huggingface.co/mradermacher/bloomz-mt-GGUF/resolve/main/bloomz-mt.Q8_0.gguf.part3of4) [PART 4](https://huggingface.co/mradermacher/bloomz-mt-GGUF/resolve/main/bloomz-mt.Q8_0.gguf.part4of4) | Q8_0 | 191.2 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|