File size: 2,965 Bytes
ae41d58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
977a21d
 
 
 
 
ae41d58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80d4345
 
 
 
 
ae41d58
80d4345
 
ae41d58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
datasets:
- Open-Orca/OpenOrca
- openchat/openchat_sharegpt4_dataset
- LDJnr/Puffin
- ehartford/samantha-data
- OpenAssistant/oasst1
- jondurbin/airoboros-gpt4-1.4.1
exported_from: ICBU-NPU/FashionGPT-70B-V1.1
language:
- en
library_name: transformers
license: llama2
quantized_by: mradermacher
---
## About

<!-- ### quantize_version: 1 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type:  -->
<!-- ### vocab_type:  -->
weighted/imatrix quants of https://huggingface.co/ICBU-NPU/FashionGPT-70B-V1.1

<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/FashionGPT-70B-V1.1-GGUF
## Usage

If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.

## Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/FashionGPT-70B-V1.1-i1-GGUF/resolve/main/FashionGPT-70B-V1.1.i1-IQ2_M.gguf) | i1-IQ2_M | 23.3 |  |
| [GGUF](https://huggingface.co/mradermacher/FashionGPT-70B-V1.1-i1-GGUF/resolve/main/FashionGPT-70B-V1.1.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 26.7 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/FashionGPT-70B-V1.1-i1-GGUF/resolve/main/FashionGPT-70B-V1.1.i1-Q3_K_M.gguf) | i1-Q3_K_M | 33.4 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/FashionGPT-70B-V1.1-i1-GGUF/resolve/main/FashionGPT-70B-V1.1.i1-Q3_K_L.gguf) | i1-Q3_K_L | 36.2 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/FashionGPT-70B-V1.1-i1-GGUF/resolve/main/FashionGPT-70B-V1.1.i1-IQ4_XS.gguf) | i1-IQ4_XS | 36.9 |  |
| [GGUF](https://huggingface.co/mradermacher/FashionGPT-70B-V1.1-i1-GGUF/resolve/main/FashionGPT-70B-V1.1.i1-Q4_K_S.gguf) | i1-Q4_K_S | 39.3 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/FashionGPT-70B-V1.1-i1-GGUF/resolve/main/FashionGPT-70B-V1.1.i1-Q4_K_M.gguf) | i1-Q4_K_M | 41.5 | fast, recommended |
| [PART 1](https://huggingface.co/mradermacher/FashionGPT-70B-V1.1-i1-GGUF/resolve/main/FashionGPT-70B-V1.1.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/FashionGPT-70B-V1.1-i1-GGUF/resolve/main/FashionGPT-70B-V1.1.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 56.7 | practically like static Q6_K |


Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

## Thanks

I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.

<!-- end -->