mouadhamri commited on
Commit
1415140
1 Parent(s): e1dcf45

End of training

Browse files
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/layoutlm-base-uncased
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - funsd
7
+ model-index:
8
+ - name: layoutlm-funsd
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # layoutlm-funsd
16
+
17
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.7011
20
+ - Answer: {'precision': 0.7142857142857143, 'recall': 0.8096415327564895, 'f1': 0.7589803012746235, 'number': 809}
21
+ - Header: {'precision': 0.2962962962962963, 'recall': 0.33613445378151263, 'f1': 0.31496062992125984, 'number': 119}
22
+ - Question: {'precision': 0.7859712230215827, 'recall': 0.8206572769953052, 'f1': 0.8029398254478639, 'number': 1065}
23
+ - Overall Precision: 0.7250
24
+ - Overall Recall: 0.7873
25
+ - Overall F1: 0.7549
26
+ - Overall Accuracy: 0.8102
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 3e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 15
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
57
+ | 1.7566 | 1.0 | 10 | 1.5349 | {'precision': 0.03646308113035551, 'recall': 0.049443757725587144, 'f1': 0.04197271773347323, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.16700819672131148, 'recall': 0.15305164319248826, 'f1': 0.15972562469377757, 'number': 1065} | 0.0979 | 0.1019 | 0.0999 | 0.4336 |
58
+ | 1.4057 | 2.0 | 20 | 1.1865 | {'precision': 0.17656500802568217, 'recall': 0.13597033374536466, 'f1': 0.15363128491620115, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.471847739888977, 'recall': 0.5586854460093896, 'f1': 0.5116079105760963, 'number': 1065} | 0.3742 | 0.3537 | 0.3637 | 0.6016 |
59
+ | 1.0729 | 3.0 | 30 | 0.9241 | {'precision': 0.49693251533742333, 'recall': 0.5006180469715699, 'f1': 0.4987684729064039, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.6378708551483421, 'recall': 0.6863849765258216, 'f1': 0.6612392582541836, 'number': 1065} | 0.5691 | 0.5700 | 0.5696 | 0.7181 |
60
+ | 0.8134 | 4.0 | 40 | 0.7831 | {'precision': 0.6211640211640211, 'recall': 0.7255871446229913, 'f1': 0.669327251995439, 'number': 809} | {'precision': 0.09375, 'recall': 0.05042016806722689, 'f1': 0.0655737704918033, 'number': 119} | {'precision': 0.6889081455805892, 'recall': 0.7464788732394366, 'f1': 0.7165389815232085, 'number': 1065} | 0.6417 | 0.6964 | 0.6679 | 0.7640 |
61
+ | 0.6582 | 5.0 | 50 | 0.7298 | {'precision': 0.6422018348623854, 'recall': 0.7787391841779975, 'f1': 0.7039106145251396, 'number': 809} | {'precision': 0.2361111111111111, 'recall': 0.14285714285714285, 'f1': 0.17801047120418848, 'number': 119} | {'precision': 0.7311233885819521, 'recall': 0.7455399061032864, 'f1': 0.7382612738261274, 'number': 1065} | 0.6737 | 0.7230 | 0.6975 | 0.7761 |
62
+ | 0.553 | 6.0 | 60 | 0.6763 | {'precision': 0.6673532440782698, 'recall': 0.8009888751545118, 'f1': 0.7280898876404494, 'number': 809} | {'precision': 0.25806451612903225, 'recall': 0.20168067226890757, 'f1': 0.22641509433962265, 'number': 119} | {'precision': 0.735445205479452, 'recall': 0.8065727699530516, 'f1': 0.7693685624720108, 'number': 1065} | 0.6859 | 0.7682 | 0.7247 | 0.7962 |
63
+ | 0.4805 | 7.0 | 70 | 0.6797 | {'precision': 0.6904255319148936, 'recall': 0.8022249690976514, 'f1': 0.7421383647798742, 'number': 809} | {'precision': 0.25925925925925924, 'recall': 0.23529411764705882, 'f1': 0.24669603524229072, 'number': 119} | {'precision': 0.7363945578231292, 'recall': 0.8131455399061033, 'f1': 0.7728692547969657, 'number': 1065} | 0.6938 | 0.7742 | 0.7318 | 0.7970 |
64
+ | 0.4259 | 8.0 | 80 | 0.6726 | {'precision': 0.689401888772298, 'recall': 0.8121137206427689, 'f1': 0.7457434733257663, 'number': 809} | {'precision': 0.24786324786324787, 'recall': 0.24369747899159663, 'f1': 0.24576271186440676, 'number': 119} | {'precision': 0.7463581833761782, 'recall': 0.8178403755868544, 'f1': 0.7804659498207885, 'number': 1065} | 0.6960 | 0.7812 | 0.7362 | 0.8020 |
65
+ | 0.3787 | 9.0 | 90 | 0.6784 | {'precision': 0.7043956043956044, 'recall': 0.792336217552534, 'f1': 0.7457824316463061, 'number': 809} | {'precision': 0.26229508196721313, 'recall': 0.2689075630252101, 'f1': 0.26556016597510373, 'number': 119} | {'precision': 0.779707495429616, 'recall': 0.8009389671361502, 'f1': 0.7901806391848076, 'number': 1065} | 0.7178 | 0.7657 | 0.7410 | 0.8026 |
66
+ | 0.3411 | 10.0 | 100 | 0.6821 | {'precision': 0.7015086206896551, 'recall': 0.8046971569839307, 'f1': 0.7495682210708117, 'number': 809} | {'precision': 0.2708333333333333, 'recall': 0.3277310924369748, 'f1': 0.2965779467680608, 'number': 119} | {'precision': 0.775200713648528, 'recall': 0.815962441314554, 'f1': 0.7950594693504116, 'number': 1065} | 0.7109 | 0.7822 | 0.7449 | 0.8047 |
67
+ | 0.313 | 11.0 | 110 | 0.7129 | {'precision': 0.7111111111111111, 'recall': 0.7911001236093943, 'f1': 0.7489760093622002, 'number': 809} | {'precision': 0.2835820895522388, 'recall': 0.31932773109243695, 'f1': 0.30039525691699603, 'number': 119} | {'precision': 0.7816711590296496, 'recall': 0.8169014084507042, 'f1': 0.7988980716253444, 'number': 1065} | 0.7210 | 0.7767 | 0.7478 | 0.7994 |
68
+ | 0.297 | 12.0 | 120 | 0.6955 | {'precision': 0.708779443254818, 'recall': 0.8182941903584673, 'f1': 0.759609868043603, 'number': 809} | {'precision': 0.291044776119403, 'recall': 0.3277310924369748, 'f1': 0.308300395256917, 'number': 119} | {'precision': 0.783978397839784, 'recall': 0.8178403755868544, 'f1': 0.8005514705882352, 'number': 1065} | 0.7214 | 0.7888 | 0.7536 | 0.8103 |
69
+ | 0.2907 | 13.0 | 130 | 0.7098 | {'precision': 0.7092511013215859, 'recall': 0.796044499381953, 'f1': 0.7501456027955737, 'number': 809} | {'precision': 0.3142857142857143, 'recall': 0.3697478991596639, 'f1': 0.33976833976833976, 'number': 119} | {'precision': 0.7896678966789668, 'recall': 0.8037558685446009, 'f1': 0.796649604467194, 'number': 1065} | 0.7242 | 0.7747 | 0.7486 | 0.8052 |
70
+ | 0.2701 | 14.0 | 140 | 0.7006 | {'precision': 0.7133479212253829, 'recall': 0.8059332509270705, 'f1': 0.7568195008705745, 'number': 809} | {'precision': 0.3037037037037037, 'recall': 0.3445378151260504, 'f1': 0.3228346456692913, 'number': 119} | {'precision': 0.7894736842105263, 'recall': 0.8169014084507042, 'f1': 0.8029533917858791, 'number': 1065} | 0.7266 | 0.7842 | 0.7543 | 0.8091 |
71
+ | 0.2649 | 15.0 | 150 | 0.7011 | {'precision': 0.7142857142857143, 'recall': 0.8096415327564895, 'f1': 0.7589803012746235, 'number': 809} | {'precision': 0.2962962962962963, 'recall': 0.33613445378151263, 'f1': 0.31496062992125984, 'number': 119} | {'precision': 0.7859712230215827, 'recall': 0.8206572769953052, 'f1': 0.8029398254478639, 'number': 1065} | 0.7250 | 0.7873 | 0.7549 | 0.8102 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.32.0
77
+ - Pytorch 2.0.1+cu118
78
+ - Datasets 2.14.4
79
+ - Tokenizers 0.13.3
preprocessor_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "feature_extractor_type": "LayoutLMv2FeatureExtractor",
5
+ "image_processor_type": "LayoutLMv2ImageProcessor",
6
+ "ocr_lang": null,
7
+ "processor_class": "LayoutLMv2Processor",
8
+ "resample": 2,
9
+ "size": {
10
+ "height": 224,
11
+ "width": 224
12
+ },
13
+ "tesseract_config": ""
14
+ }
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e24cb2304bd5b9ec4a49f2c961b0b93afd515eb28637c1da7e07abeb7106eef1
3
  size 450603969
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:073ece5b4990116f91de6ced14685a8bb00af0f17fa77679c8cfcf015309bf93
3
  size 450603969
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": null,
3
+ "apply_ocr": false,
4
+ "clean_up_tokenization_spaces": true,
5
+ "cls_token": "[CLS]",
6
+ "cls_token_box": [
7
+ 0,
8
+ 0,
9
+ 0,
10
+ 0
11
+ ],
12
+ "do_basic_tokenize": true,
13
+ "do_lower_case": true,
14
+ "mask_token": "[MASK]",
15
+ "model_max_length": 512,
16
+ "never_split": null,
17
+ "only_label_first_subword": true,
18
+ "pad_token": "[PAD]",
19
+ "pad_token_box": [
20
+ 0,
21
+ 0,
22
+ 0,
23
+ 0
24
+ ],
25
+ "pad_token_label": -100,
26
+ "processor_class": "LayoutLMv2Processor",
27
+ "sep_token": "[SEP]",
28
+ "sep_token_box": [
29
+ 1000,
30
+ 1000,
31
+ 1000,
32
+ 1000
33
+ ],
34
+ "strip_accents": null,
35
+ "tokenize_chinese_chars": true,
36
+ "tokenizer_class": "LayoutLMv2Tokenizer",
37
+ "unk_token": "[UNK]"
38
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff