--- license: apache-2.0 datasets: - motexture/cData language: - en base_model: - HuggingFaceTB/SmolLM2-1.7B-Instruct pipeline_tag: text-generation tags: - smoll - coding - coder - model - small --- # SmolLCoder-1.7B-Instruct ## Introduction SmolLCoder-1.7B-Instruct is a fine-tuned version of SmolLM2-1.7B-Instruct, trained on the cData coding dataset. ## Quickstart Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( "motexture/SmolLCoder-1.7B-Instruct", torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("motexture/SmolLCoder-1.7B-Instruct") prompt = "Write a C++ program that prints Hello World!" messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=4096, do_sample=True, temperature=0.3 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ## License [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0) ## Citation ```bash @misc{allal2024SmolLM2, title={SmolLM2 - with great data, comes great performance}, author={Loubna Ben Allal and Anton Lozhkov and Elie Bakouch and Gabriel Martín Blázquez and Lewis Tunstall and Agustín Piqueres and Andres Marafioti and Cyril Zakka and Leandro von Werra and Thomas Wolf}, year={2024}, } ```