--- license: mit base_model: emilyalsentzer/Bio_ClinicalBERT tags: - generated_from_trainer model-index: - name: ICU_Returns_BioClinicalBERT results: [] --- # ICU_Returns_BioClinicalBERT This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7775 - F1:: 0.7063 - Roc Auc: 0.7198 - Precision with 0:: 0.8846 - Precision with 1:: 0.6538 - Recall with 0:: 0.5055 - Recal with 1:: 0.9341 - Accuracy:: 0.7198 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 13 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1: | Roc Auc | Precision with 0: | Precision with 1: | Recall with 0: | Recal with 1: | Accuracy: | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:-----------------:|:-----------------:|:--------------:|:--------------:|:---------:| | No log | 1.0 | 46 | 0.6964 | 0.3573 | 0.5110 | 1.0 | 0.5056 | 0.0220 | 1.0 | 0.5110 | | No log | 2.0 | 92 | 0.6611 | 0.5248 | 0.5714 | 0.6912 | 0.5439 | 0.2582 | 0.8846 | 0.5714 | | No log | 3.0 | 138 | 0.6322 | 0.6315 | 0.6374 | 0.6838 | 0.6096 | 0.5110 | 0.7637 | 0.6374 | | No log | 4.0 | 184 | 0.6526 | 0.6396 | 0.6566 | 0.7767 | 0.6092 | 0.4396 | 0.8736 | 0.6566 | | No log | 5.0 | 230 | 0.6826 | 0.6693 | 0.6923 | 0.9070 | 0.6259 | 0.4286 | 0.9560 | 0.6923 | | No log | 6.0 | 276 | 0.7496 | 0.7230 | 0.7335 | 0.8829 | 0.6680 | 0.5385 | 0.9286 | 0.7335 | | No log | 7.0 | 322 | 1.5500 | 0.6398 | 0.6703 | 0.9079 | 0.6076 | 0.3791 | 0.9615 | 0.6703 | | No log | 8.0 | 368 | 0.9037 | 0.7438 | 0.7527 | 0.9035 | 0.684 | 0.5659 | 0.9396 | 0.7527 | | No log | 9.0 | 414 | 1.6723 | 0.6965 | 0.7143 | 0.9149 | 0.6444 | 0.4725 | 0.9560 | 0.7143 | | No log | 10.0 | 460 | 1.4913 | 0.7030 | 0.7170 | 0.8835 | 0.6513 | 0.5 | 0.9341 | 0.7170 | | 0.3158 | 11.0 | 506 | 1.7129 | 0.6990 | 0.7143 | 0.89 | 0.6477 | 0.4890 | 0.9396 | 0.7143 | | 0.3158 | 12.0 | 552 | 1.8420 | 0.6882 | 0.7060 | 0.8947 | 0.6394 | 0.4670 | 0.9451 | 0.7060 | | 0.3158 | 13.0 | 598 | 1.7775 | 0.7063 | 0.7198 | 0.8846 | 0.6538 | 0.5055 | 0.9341 | 0.7198 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1