leejunhyeok commited on
Commit
39ad42a
1 Parent(s): 58ecc2e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -0
README.md CHANGED
@@ -1,3 +1,44 @@
1
  ---
2
  license: mit
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ language:
4
+ - en
5
  ---
6
+ # **Introduction**
7
+ MoMo-70B is trained via Supervised Fine-Tuning (SFT) using [LoRA](https://arxiv.org/abs/2106.09685), with the QWEN-72B model as its base-model.
8
+ This is a Direct Preference Optimization([DPO](https://arxiv.org/abs/2305.18290)) version of v1.4
9
+ Note that we did not exploit any form of weight merge.
10
+ For leaderboard submission, the trained weight is realigned for compatibility with llama.
11
+ MoMo-70B is trained using **[Moreh](https://moreh.io/)**'s [MoAI platform](https://moreh.io/product), which simplifies the training of large-scale models, and AMD's MI250 GPU.
12
+
13
+
14
+ ## Details
15
+ ### Used Librarys
16
+ - torch
17
+ - peft
18
+ ### Used Datasets
19
+ - Open-Orca/SlimOrca
20
+ -
21
+ - No other dataset was used
22
+ - No benchmark test set or the training set are used
23
+ - [data contamination check](https://github.com/swj0419/detect-pretrain-code-contamination) result
24
+
25
+ | Model | ARC | MMLU | TruthfulQA | GSM8K |
26
+ |------------------------------|-------|-------|-------|-------|
27
+ | **V1.4(result < 0.1, %)**| TBU |TBU | TBU | TBU |
28
+ ### Used Environments
29
+ - AMD MI250 & MoAI platform
30
+ - Please visit https://moreh.io/product for more information about MoAI platform
31
+ - Or, contact us directly [[email protected]](mailto:[email protected])
32
+
33
+ ## How to use
34
+
35
+ ```python
36
+ # pip install transformers==4.35.2
37
+ import torch
38
+ from transformers import AutoModelForCausalLM, AutoTokenizer
39
+
40
+ tokenizer = AutoTokenizer.from_pretrained("moreh/MoMo-70B-LoRA-V1.8.4")
41
+ model = AutoModelForCausalLM.from_pretrained(
42
+ "moreh/MoMo-70B-LoRA-V1.8.4"
43
+ )
44
+ ```