pythia410m-sft-tldr / code /run_on_mila.py
mnoukhov's picture
Training in progress, step 500
1904ee8 verified
raw
history blame
7.3 kB
import argparse
import datetime
import os
import subprocess
from copy import deepcopy
import yaml
from accelerate.commands import launch
from generate_vllm import generate_relabel_args_dict
def run_exp(exp_dict, savedir, args):
exp_name = exp_dict.pop("name")
git_hash = exp_dict.pop("git")
print(args)
if args.wandb:
os.environ["WANDB_MODE"] = "online"
# os.environ["WANDB_RUN_ID"] = os.path.basename(savedir)
os.environ["WANDB_NAME"] = exp_name
os.environ["WANDB_RUN_GROUP"] = exp_name + git_hash
else:
os.environ["WANDB_MODE"] = "disabled"
if exp_name.startswith("marlhf"):
print("MARLHF")
accelerate_launch("rl_training_with_ma_value.py", exp_dict, args)
elif exp_name.startswith("vmrlhf"):
print("Separate Value Model RLHF")
accelerate_launch("rl_training_value_model.py", exp_dict, args)
elif exp_name.startswith("rlhf"):
print("RLHF")
accelerate_launch("rl_training.py", exp_dict, args)
elif exp_name.startswith("dpo"):
print("DPO")
accelerate_launch("dpo_training.py", exp_dict, args)
elif exp_name.startswith("rm"):
accelerate_launch("reward_modeling.py", exp_dict, args)
elif exp_name.startswith("gptrm"):
accelerate_launch("gpt_reward_modeling.py", exp_dict, args)
elif exp_name.startswith("sft"):
accelerate_launch("sft.py", exp_dict, args)
elif exp_name.startswith("rouge"):
exp_dict.pop("save_strategy", None)
accelerate_launch("evaluate_rouge.py", exp_dict, args)
elif exp_name.startswith("pseudo"):
exp_dict.pop("save_strategy", None)
accelerate_launch("inference_pseudolabel.py", exp_dict, args)
elif exp_name.startswith("create_rlhf"):
exp_dict.pop("save_strategy", None)
accelerate_launch("create_rlhf_dataset.py", exp_dict, args)
elif exp_name.startswith("vllm"):
exp_dict.pop("save_strategy", None)
exp_dict["num_gpus"] = args.gpus
generate_vllm_args_dict(exp_dict)
else:
raise Exception(f"Config file {exp_name} does not start with one of the correct prefixes")
def accelerate_launch(training_file, training_args_dict, args):
parser = launch.launch_command_parser()
training_cmd_args = []
if args.accelerate_config is not None and args.accelerate_config != "None":
training_cmd_args.extend(["--config_file", args.accelerate_config])
# training_cmd_args.extend(["--num_processes", str(args.gpus)])
# training_cmd_args.extend(
# ["--gradient_accumulation_steps", str(training_args_dict["gradient_accumulation_steps"])]
# )
elif args.gpus > 1:
training_cmd_args.append("--multi_gpu")
# if training_args_dict.pop("fp16", False):
# mixed_precision = "fp16"
# elif training_args_dict.pop("bf16", False):
# mixed_precision = "bf16"
if training_args_dict.get("fp16", False):
mixed_precision = "fp16"
elif training_args_dict.get("bf16", False):
mixed_precision = "bf16"
else:
mixed_precision = "no"
training_cmd_args.extend(["--mixed_precision", mixed_precision])
#
training_cmd_args.extend(["--num_machines", "1"])
training_cmd_args.extend(["--num_processes", str(args.gpus)])
# if args.gpus > 1:
# if args.deepspeed is not None and args.deepspeed != "None":
# assert (
# "gradient_accumulation_steps" in training_args_dict
# ), "Must include gradient_accumulation_steps in config"
# training_cmd_args.append("--use_deepspeed")
# training_cmd_args.extend(["--zero_stage", str(args.deepspeed)])
# training_cmd_args.extend(
# ["--gradient_accumulation_steps", str(training_args_dict["gradient_accumulation_steps"])]
# )
training_cmd_args.append(training_file)
for key, val in training_args_dict.items():
training_cmd_args.append(f"--{key}")
if not (isinstance(val, bool) and val is True):
training_cmd_args.append(str(val))
print(" ".join(training_cmd_args))
args = parser.parse_args(training_cmd_args)
launch.launch_command(args)
if __name__ == "__main__":
# Specify arguments regarding save directory and job scheduler
parser = argparse.ArgumentParser()
parser.add_argument(
"-e",
"--exp_group",
help="Define the experiment group to run.",
nargs="+",
)
parser.add_argument(
"-sb",
"--savedir_base",
default="/home/toolkit/trl/results",
help="Define the base directory where the experiments will be saved.",
)
parser.add_argument(
"-r",
"--reset",
type=int,
default=0,
help="If true, reset the experiment. Else, resume.",
)
parser.add_argument(
"-j",
"--job_scheduler",
default=None,
type=str,
help="Run the experiments as jobs in the cluster.",
)
parser.add_argument(
"-p",
"--python_binary",
default="/home/toolkit/.conda/envs/trl/bin/python",
help="path to your python executable",
)
parser.add_argument("-n", "--gpus", default=1, type=int, help="number of gpus to use for experiment")
parser.add_argument("-a", "--accelerate_config", default=None, help="accelerate config")
# parser.add_argument("-d", "--deepspeed", default=None, help="ds stage")
parser.add_argument("--gpu-mem", default=32, type=int, help="mem of gpus to use for experiment")
parser.add_argument("--wandb", action="store_true", help="force enable wandb", default=False)
parser.add_argument("--search", default=None)
# parser.add_argument(
# "--exp-id", default=None, help="id used to resume an experiment"
# )
args, extra_args = parser.parse_known_args()
exp_list = []
for exp_file in args.exp_group:
with open(exp_file, "r") as fp:
exp_dict = yaml.safe_load(fp)
exp_dict['output_dir'] = args.savedir_base
exp_dict["name"] = os.path.basename(exp_file)
exp_dict["git"] = subprocess.check_output(["git", "rev-parse", "--short", "HEAD"]).decode("ascii").strip()
if args.search is not None and args.search != "None":
search_key, search_val_str = args.search.split("=")
search_vals = search_val_str.split(",")
exps = []
for val in search_vals:
exp_dict_copy = deepcopy(exp_dict)
exp_dict_copy[search_key] = val
exp_dict_copy["name"] = exp_dict_copy["name"] + f"/{search_key}={val}"
exps.append(exp_dict_copy)
# for key, val in vars(extra_args).items():
# exp_dict[key] = val
# print(exps)
else:
exps = [exp_dict]
exp_list.extend(exps)
args.exp_group = " ".join(args.exp_group)
print(args.exp_group)
if args.wandb:
timenow = datetime.datetime.now().strftime("%d-%m-%y_%H-%M-%S")
exp_list[0]["name"] = exp_list[0]["name"] + f"_local_{timenow}"
# exp_list[0]["save_strategy"] = "no"
# Run experiments and create results file
run_exp(exp_list[0], "output", args)