File size: 12,011 Bytes
1904ee8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
import os
from dataclasses import dataclass, field
from typing import Optional
import bitsandbytes as bnb
import torch
from accelerate import Accelerator
from datasets import load_dataset
from peft import AutoPeftModelForCausalLM, AutoPeftModelForSeq2SeqLM, LoraConfig
from tqdm import tqdm
from transformers import (
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
AutoTokenizer,
BitsAndBytesConfig,
GPT2Model,
HfArgumentParser,
TrainingArguments,
)
from transformers.pytorch_utils import Conv1D
from transformers.trainer_utils import get_last_checkpoint
from trl import DataCollatorForCompletionOnlyLM, SFTTrainer
tqdm.pandas()
# Define and parse arguments.
@dataclass
class ScriptArguments:
"""
The name of the Casual LM model we wish to fine with SFTTrainer
"""
model_name: Optional[str] = field(default="EleutherAI/pythia-6.9b-deduped", metadata={"help": "the model name"})
tokenizer_name: Optional[str] = field(default=None, metadata={"help": "the model name"})
dataset_name: Optional[str] = field(
default="CarperAI/openai_summarize_tldr", metadata={"help": "the dataset name"}
)
train_split: Optional[str] = field(
default="train", metadata={"help": "the dataset split to evaluate on; default to 'none' (no evaluation)"}
)
eval_split: Optional[str] = field(
default="test",#"valid[:2000]",
metadata={"help": "the dataset split to evaluate on; default to 'none' (no evaluation)"},
)
log_with: Optional[str] = field(default="wandb", metadata={"help": "use 'wandb' to log with wandb"})
streaming: Optional[bool] = field(default=False, metadata={"help": "whether to stream the dataset"})
shuffle_buffer: Optional[int] = field(default=5000, metadata={"help": "the shuffle buffer size"})
learning_rate: Optional[float] = field(default=1e-5, metadata={"help": "the learning rate"})
lr_scheduler_type: Optional[str] = field(default="cosine")
num_warmup_steps: Optional[int] = field(default=100)
weight_decay: Optional[float] = field(default=0.05)
optimizer_type: Optional[str] = field(default="paged_adamw_32bit", metadata={"help": "the optimizer type"})
max_steps: Optional[int] = field(default=-1, metadata={"help": "the number of training steps"})
num_train_epochs: Optional[int] = field(default=1, metadata={"help": "the number of training epochs"})
per_device_train_batch_size: Optional[int] = field(
default=16, metadata={"help": "the per device train batch size"}
)
per_device_eval_batch_size: Optional[int] = field(default=1, metadata={"help": "the per device eval batch size"})
gradient_accumulation_steps: Optional[int] = field(
default=16, metadata={"help": "the number of gradient accumulation steps"}
)
gradient_checkpointing: Optional[bool] = field(
default=False, metadata={"help": "whether to use gradient checkpointing"}
)
seq_length: Optional[int] = field(default=560, metadata={"help": "Input sequence length"})
load_in_8bit: Optional[bool] = field(default=True, metadata={"help": "load the model in 8 bits precision"})
load_in_4bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 4 bits precision"})
use_peft: Optional[bool] = field(default=True, metadata={"help": "Wether to use PEFT or not to train adapters"})
lora_alpha: Optional[float] = field(default=16, metadata={"help": "the lora alpha parameter"})
lora_dropout: Optional[float] = field(default=0.05, metadata={"help": "the lora dropout parameter"})
lora_r: Optional[int] = field(default=8, metadata={"help": "the lora r parameter"})
trust_remote_code: Optional[bool] = field(default=True, metadata={"help": "Enable `trust_remote_code`"})
bf16: Optional[bool] = field(default=True)
fp16_model: Optional[bool] = field(
default=False,
metadata={},
)
fp16: Optional[bool] = field(
default=False,
metadata={
"help": "This essentially cuts the training time in half if you want to sacrifice a little precision and have a supported GPU."
},
)
train_completions: Optional[bool] = field(default=False)
packing: Optional[bool] = field(default=True)
output_dir: Optional[str] = field(default="./results", metadata={"help": "the output directory"})
output_model_name: Optional[str] = field(default=None, metadata={"help": "the model pushed to hub"})
logging_steps: Optional[int] = field(default=10, metadata={"help": "the number of logging steps"})
eval_steps: Optional[int] = field(default=1000, metadata={"help": "the number of steps to eval at"})
save_steps: Optional[int] = field(default=1000, metadata={"help": "the number of steps to save at"})
save_strategy: Optional[str] = field(default="steps")
seed: Optional[int] = field(default=0)
just_eval: Optional[bool] = field(default=False)
resume_from_checkpoint: Optional[str] = field(default=None)
def chars_token_ratio(dataset, tokenizer, nb_examples=400):
"""
Estimate the average number of characters per token in the dataset.
"""
total_characters, total_tokens = 0, 0
for _, example in tqdm(zip(range(nb_examples), iter(dataset)), total=nb_examples):
text = prepare_sample_text(example)
total_characters += len(text)
if tokenizer.is_fast:
total_tokens += len(tokenizer(text).tokens())
else:
total_tokens += len(tokenizer.tokenize(text))
return total_characters / total_tokens
def prepare_sample_text(examples):
if isinstance(examples["chosen"], str):
return examples["prompt"] + examples["chosen"]
elif isinstance(examples["chosen"], list):
return list(map(str.__add__, examples["prompt"], examples["chosen"]))
else:
raise Exception(f"weird input examples of type {type(examples)}")
def create_datasets(args):
train_data = load_dataset(
args.dataset_name,
split=args.train_split,
streaming=args.streaming,
)
if args.streaming:
train_data = train_data.shuffle(buffer_size=args.shuffle_buffer, seed=args.seed)
valid_data = load_dataset(
args.dataset_name,
split=args.eval_split,
)
return train_data, valid_data
def create_model(args):
print("Loading the model")
if args.load_in_8bit and args.load_in_4bit:
raise ValueError("You can't load the model in 8 bits and 4 bits at the same time")
elif args.load_in_8bit or args.load_in_4bit:
quantization_config = BitsAndBytesConfig(load_in_8bit=args.load_in_8bit, load_in_4bit=args.load_in_4bit)
device_map = {"": Accelerator().local_process_index}
else:
device_map = None
quantization_config = None
if args.bf16:
torch_dtype = torch.bfloat16
elif args.fp16_model:
torch_dtype = torch.float16
else:
torch_dtype = None
# n_gpus = torch.cuda.device_count()
# max_memory = "32000MB"
# max_memory = {i: max_memory for i in range(n_gpus)}
if "t5" in args.model_name:
model_cls = AutoModelForSeq2SeqLM
else:
model_cls = AutoModelForCausalLM
model = model_cls.from_pretrained(
args.model_name,
quantization_config=quantization_config,
device_map=device_map,
trust_remote_code=args.trust_remote_code,
torch_dtype=torch_dtype,
# max_memory=max_memory,
token=True,
)
model.config.torch_dtype = torch_dtype
model.config.use_cache = False
print("Loading dataset")
tokenizer = AutoTokenizer.from_pretrained(args.model_name if args.tokenizer_name is None else args.tokenizer_name)
if getattr(tokenizer, "pad_token", None) is None:
tokenizer.pad_token = tokenizer.eos_token
return model, tokenizer
if __name__ == "__main__":
parser = HfArgumentParser(ScriptArguments)
args = parser.parse_args_into_dataclasses()[0]
os.makedirs(args.output_dir, exist_ok=True)
model, tokenizer = create_model(args)
train_dataset, eval_dataset = create_datasets(args)
if args.train_completions:
data_collator = DataCollatorForCompletionOnlyLM(tokenizer=tokenizer, response_template="TL;DR:")
else:
data_collator = None
training_args = TrainingArguments(
output_dir=args.output_dir,
per_device_train_batch_size=args.per_device_train_batch_size,
per_device_eval_batch_size=args.per_device_eval_batch_size,
dataloader_drop_last=True,
evaluation_strategy="steps",
max_steps=args.max_steps,
num_train_epochs=args.num_train_epochs,
eval_steps=args.eval_steps,
save_steps=args.save_steps,
save_strategy=args.save_strategy,
logging_steps=args.logging_steps,
learning_rate=args.learning_rate,
lr_scheduler_type=args.lr_scheduler_type,
warmup_steps=args.num_warmup_steps,
gradient_accumulation_steps=args.gradient_accumulation_steps,
gradient_checkpointing=args.gradient_checkpointing,
bf16=args.bf16,
fp16=args.fp16,
weight_decay=args.weight_decay,
report_to=args.log_with,
optim=args.optimizer_type,
remove_unused_columns=False,
disable_tqdm=False,
seed=args.seed,
# find_unused_params is necessary for grad checkpointing
ddp_find_unused_parameters=(args.gradient_checkpointing),
)
if args.use_peft:
peft_config = LoraConfig(
r=args.lora_r,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
target_modules="all-linear",
bias="none",
task_type="CAUSAL_LM",
)
else:
peft_config = None
chars_per_token = chars_token_ratio(train_dataset, tokenizer)
print(f"The character to token ratio of the train dataset is: {chars_per_token:.2f}")
print("Starting main loop")
trainer = SFTTrainer(
model=model,
tokenizer=tokenizer,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
peft_config=peft_config,
max_seq_length=args.seq_length,
formatting_func=prepare_sample_text,
packing=args.packing,
chars_per_token=chars_per_token,
data_collator=data_collator,
)
if args.use_peft:
trainer.model.print_trainable_parameters()
if not args.just_eval:
if args.resume_from_checkpoint is not None:
last_checkpoint = args.resume_from_checkpoint
else:
# when job is interrupted and restarted
last_checkpoint = get_last_checkpoint(args.output_dir)
print("Training...")
trainer.train(resume_from_checkpoint=last_checkpoint)
trainer.evaluate()
print("Saving last checkpoint of the model")
output_dir = os.path.join(args.output_dir, "final_model")
trainer.save_model(output_dir)
if args.use_peft:
output_dir = os.path.join(args.output_dir, "final_adapter_checkpoint")
trainer.model.save_pretrained(output_dir)
# Free memory for merging weights
del model
torch.cuda.empty_cache()
if "t5" in args.model_name:
model_cls = AutoPeftModelForSeq2SeqLM
else:
model_cls = AutoPeftModelForCausalLM
# model = model_cls.from_pretrained(
# output_dir, device_map="auto", torch_dtype=trainer.model.config.torch_dtype
# )
model = trainer.model.merge_and_unload()
output_merged_dir = os.path.join(args.output_dir, "final_merged_checkpoint")
model.save_pretrained(output_merged_dir, safe_serialization=True)
if args.output_model_name is not None:
model.push_to_hub(args.output_model_name)
else:
results = trainer.evaluate()
print(results)
|