File size: 24,124 Bytes
1904ee8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from dataclasses import dataclass, field
from typing import Dict, List, Literal, Optional
import bitsandbytes as bnb
import torch
from accelerate import Accelerator
from callbacks import GoldModelRewardCallback, PerplexityCallback, PerplexityGenCallback
from datasets import builder, concatenate_datasets, load_dataset
from peft import AutoPeftModelForCausalLM, LoraConfig, PeftConfig, get_peft_model, prepare_model_for_kbit_training
from scalar_rm_model import ScalarModel
from transformers import (
AutoModelForCausalLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
GenerationConfig,
HfArgumentParser,
TrainerCallback,
TrainingArguments,
)
from transformers.trainer_utils import get_last_checkpoint
from trl import DPOTrainer
builder.has_sufficient_disk_space = lambda needed_bytes, directory=".": True
# Define and parse arguments.
@dataclass
class ScriptArguments:
"""
The arguments for the DPO training script.
"""
# data parameters
dataset_name: Optional[str] = field(
default="mnoukhov/openai_summarize_comparisons_tldrprompt_relabel1b", metadata={"help": "the dataset name"}
)
train_split: Optional[str] = field(default="train", metadata={"help": "the dataset split to train on"})
eval_split: Optional[str] = field(
default="test", metadata={"help": "the dataset split to evaluate on; default to 'none' (no evaluation)"}
)
beta: Optional[float] = field(default=0.1, metadata={"help": "the beta parameter for DPO loss"})
pseudo_dataset_name: Optional[str] = field(default=None, metadata={"help": "the dataset name"})
pseudo_dataset_split: Optional[str] = field(default="train", metadata={"help": "the dataset name"})
prompt_field: Optional[str] = field(default="prompt")
# model parameters
model_name: Optional[str] = field(default="gpt2", metadata={"help": "the model name"})
model_revision: Optional[str] = field(default=None, metadata={"help": "the model name"})
tokenizer_name: Optional[str] = field(default=None, metadata={"help": "the model name"})
bf16: Optional[bool] = field(
default=False,
metadata={
"help": "This essentially cuts the training time in half if you want to sacrifice a little precision and have a supported GPU."
},
)
fp16_model: Optional[bool] = field(
default=False,
metadata={
"help": "This essentially cuts the training time in half if you want to sacrifice a little precision and have a supported GPU."
},
)
fp16: Optional[bool] = field(
default=False,
metadata={
"help": "This essentially cuts the training time in half if you want to sacrifice a little precision and have a supported GPU."
},
)
load_in_8bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 8 bits precision"})
load_in_4bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 4 bits precision"})
use_peft: Optional[bool] = field(default=True, metadata={"help": "Wether to use PEFT or not to train adapters"})
lora_alpha: Optional[float] = field(default=16, metadata={"help": "the lora alpha parameter"})
lora_dropout: Optional[float] = field(default=0.05, metadata={"help": "the lora dropout parameter"})
lora_r: Optional[int] = field(default=8, metadata={"help": "the lora r parameter"})
lora_all_linear: Optional[bool] = field(default=False, metadata={"help": "lora adapter on all linear layers"})
# training parameters
optimizer_type: Optional[str] = field(default="adamw_torch", metadata={"help": "the optimizer type"})
warmup_steps: Optional[int] = field(default=150)
learning_rate: Optional[float] = field(default=1e-3, metadata={"help": "optimizer learning rate"})
per_device_train_batch_size: Optional[int] = field(default=4, metadata={"help": "batch size per device"})
per_device_eval_batch_size: Optional[int] = field(default=8, metadata={"help": "batch size per device"})
gradient_accumulation_steps: Optional[int] = field(
default=1, metadata={"help": "the number of gradient accumulation steps"}
)
max_length: Optional[int] = field(default=560, metadata={"help": "max length of each sample"})
max_prompt_length: Optional[int] = field(default=512, metadata={"help": "max length of each sample's prompt"})
max_target_length: Optional[int] = field(
default=48, metadata={"help": "Only used for encoder decoder model. Max target of each sample's prompt"}
)
num_train_epochs: Optional[int] = field(default=1, metadata={"help": "the number of training epochs"})
max_steps: Optional[int] = field(default=-1)
gradient_checkpointing: Optional[bool] = field(
default=False, metadata={"help": "whether to use gradient checkpointing"}
)
# instrumentation
seed: Optional[int] = field(default=0)
output_dir: Optional[str] = field(default="results", metadata={"help": "the output directory"})
logging_steps: Optional[int] = field(default=100, metadata={"help": "the number of update steps between two logs"})
log_n_samples_during_eval: Optional[int] = field(default=100)
eval_steps: Optional[float] = field(default=None, metadata={"help": "the number of steps to eval at"})
save_steps: Optional[float] = field(default=1000, metadata={"help": "the number of steps to save at"})
save_strategy: Optional[str] = field(default="steps")
report_to: Optional[str] = field(
default="wandb",
metadata={
"help": 'The list of integrations to report the results and logs to. Supported platforms are `"azure_ml"`,'
'`"comet_ml"`, `"mlflow"`, `"neptune"`, `"tensorboard"`,`"clearml"` and `"wandb"`. '
'Use `"all"` to report to all integrations installed, `"none"` for no integrations.'
},
)
# debug argument for distributed training
ignore_bias_buffers: Optional[bool] = field(
default=False,
metadata={
"help": "fix for DDP issues with LM bias/mask buffers - invalid scalar type,`inplace operation. See"
"https://github.com/huggingface/transformers/issues/22482#issuecomment-1595790992"
},
)
push_to_hub: Optional[bool] = field(default=False)
push_to_hub_organization: Optional[str] = field(default=None)
# gold model
gold_eval: Literal["full", "gen", "ppl", "none"] = field(default="full")
gold_model_name: str = field(default=None, metadata={"help": "the gold reward model name"})
gold_model_revision: Optional[str] = field(default=None, metadata={"help": "the model name"})
gold_in_8bit: Optional[bool] = field(default=False, metadata={"help": "gold the model in 8 bits precision"})
gold_in_4bit: Optional[bool] = field(default=False, metadata={"help": "gold the model in 4 bits precision"})
gold_bf16: Optional[bool] = field(
default=False,
)
gold_fp16: Optional[bool] = field(
default=False,
)
generate_greedy: Optional[bool] = field(default=True)
gold_dataset_name: Optional[str] = field(
default="CarperAI/openai_summarize_tldr", metadata={"help": "the dataset name"}
)
gold_eval_split: Optional[str] = field(default="valid")
gold_prompt_field: Optional[str] = field(default="prompt")
gold_target_field: Optional[str] = field(default="label")
gold_load_and_unload: Optional[str] = field(default=False)
mode: Optional[str] = field(default="train")
eval_first_step: Optional[bool] = field(default=True)
strip_prompt: Optional[bool] = field(default=True)
def find_all_linear_names(args, model):
cls = bnb.nn.Linear4bit if args.load_in_4bit else (bnb.nn.Linear8bitLt if args.load_in_8bit else torch.nn.Linear)
lora_module_names = set()
for name, module in model.named_modules():
if isinstance(module, cls):
names = name.split(".")
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if "lm_head" in lora_module_names: # needed for 16-bit
lora_module_names.remove("lm_head")
if "score" in lora_module_names: # needed for 16-bit
lora_module_names.remove("score")
return list(lora_module_names)
def create_and_prepare_model(args):
if args.load_in_8bit and args.load_in_4bit:
raise ValueError("You can't load the model in 8 bits and 4 bits at the same time")
elif args.load_in_8bit or args.load_in_4bit:
quantization_config = BitsAndBytesConfig(load_in_8bit=args.load_in_8bit, load_in_4bit=args.load_in_4bit)
device_map = {"": Accelerator().local_process_index}
else:
device_map = None
quantization_config = None
if args.bf16:
dtype = torch.bfloat16
elif args.fp16_model:
dtype = torch.float16
else:
dtype = torch.float32
tokenizer_name = args.tokenizer_name
if "adapter" in args.model_name:
model_cls = AutoPeftModelForCausalLM
config = PeftConfig.from_pretrained(args.model_name)
if tokenizer_name is None:
tokenizer_name = config.base_model_name_or_path
else:
model_cls = AutoModelForCausalLM
if tokenizer_name is None:
tokenizer_name = args.model_name
model = model_cls.from_pretrained(
args.model_name,
revision=args.model_revision,
quantization_config=quantization_config,
device_map=device_map,
torch_dtype=dtype,
)
model.config.torch_dtype = dtype
model.config.use_cache = not script_args.gradient_checkpointing
# if script_args.ignore_bias_buffers:
# torch distributed hack
if quantization_config is not None:
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=script_args.gradient_checkpointing)
# we add `score` to the list of modules to save to
# correctly save the score head.
# set target modules to be query_key_value for Pythia
if args.lora_all_linear:
modules = find_all_linear_names(args, model)
else:
modules = None
if args.use_peft:
modules_to_save = ["lm_head"]
peft_config = LoraConfig(
r=args.lora_r,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
bias="none",
task_type="CAUSAL_LM",
target_modules=modules,
modules_to_save=modules_to_save,
)
model = get_peft_model(model, peft_config)
for key, _ in model.named_modules():
target_module_found = any(key.endswith(target_key) for target_key in modules_to_save)
if target_module_found:
model.get_submodule(key + ".original_module").requires_grad_(False)
# if args.bf16:
# for name, module in model.named_modules():
# if isinstance(module, LoraLayer):
# module = module.to(torch.bfloat16)
# if "norm" in name:
# module = module.to(torch.float32)
# if "score" in name or "embed_tokens" in name:
# if hasattr(module, "weight") and module.weight.dtype == torch.float32:
# module = module.to(torch.bfloat16)
# tokenizer_name = script_args.model_name if script_args.tokenizer_name is None else script_args.tokenizer_name
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
if tokenizer_name.startswith("EleutherAI"):
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
elif getattr(tokenizer, "pad_token", None) is None:
tokenizer.pad_token = tokenizer.eos_token
# if getattr(model.config, "pad_token_id", None) is None:
# model.config.pad_token_id = model.config.eos_token_id
return model, tokenizer
def create_and_prepare_gold_model(args):
if script_args.gold_in_8bit or script_args.gold_in_4bit:
gold_quantization_config = BitsAndBytesConfig(
load_in_8bit=script_args.gold_in_8bit, load_in_4bit=script_args.gold_in_4bit
)
gold_device_map = {"": Accelerator().local_process_index}
else:
gold_device_map = None
gold_quantization_config = None
if script_args.gold_bf16:
torch_dtype = torch.bfloat16
elif script_args.gold_fp16:
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
if script_args.gold_model_name.startswith("vwxyzjn"):
gold_model_cls = ScalarModel
else:
gold_model_cls = AutoModelForSequenceClassification
gold_model = gold_model_cls.from_pretrained(
script_args.gold_model_name,
revision=script_args.gold_model_revision,
quantization_config=gold_quantization_config,
torch_dtype=torch_dtype,
device_map=gold_device_map,
)
# if getattr(gold_model.config, "pad_token_id", None) is None:
# gold_model.config.pad_token_id = gold_model.config.eos_token_id
return gold_model
def strip_prompt(examples):
examples["prompt"] = [prompt.strip() for prompt in examples["prompt"]]
return examples
def create_and_prepare_dataset(args):
train_dataset = load_dataset(args.dataset_name, split=args.train_split)
eval_dataset = load_dataset(args.dataset_name, split=args.eval_split)
if args.prompt_field != "prompt":
train_dataset = train_dataset.rename_column(args.prompt_field, "prompt")
eval_dataset = eval_dataset.rename_column(args.prompt_field, "prompt")
if args.pseudo_dataset_name is not None:
all_train_datasets = [train_dataset]
pseudo_dataset_names = args.pseudo_dataset_name.split(",")
for ds_name in pseudo_dataset_names:
dataset = load_dataset(ds_name, split=args.pseudo_dataset_split)
if args.strip_prompt:
dataset = dataset.map(strip_prompt, batched=True)
all_train_datasets.append(dataset)
train_dataset = concatenate_datasets(all_train_datasets)
return train_dataset, eval_dataset
if __name__ == "__main__":
parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]
# 1. load a pretrained model
model, tokenizer = create_and_prepare_model(script_args)
if script_args.ignore_bias_buffers:
# torch distributed hack
model._ddp_params_and_buffers_to_ignore = [
name for name, buffer in model.named_buffers() if buffer.dtype == torch.bool
]
train_dataset, eval_dataset = create_and_prepare_dataset(script_args)
if script_args.push_to_hub:
model_id = script_args.model_name.rsplit("/", 1)[-1] + "_" + os.getenv("WANDB_RUN_GROUP")
hub_model_id = f"{script_args.push_to_hub_organization}/{model_id}"
print(f"pushing model to {hub_model_id}")
else:
hub_model_id = None
# 4. initialize training arguments:
training_args = TrainingArguments(
output_dir=script_args.output_dir,
per_device_train_batch_size=script_args.per_device_train_batch_size,
per_device_eval_batch_size=script_args.per_device_eval_batch_size,
num_train_epochs=script_args.num_train_epochs,
max_steps=script_args.max_steps,
remove_unused_columns=False,
gradient_accumulation_steps=script_args.gradient_accumulation_steps,
learning_rate=script_args.learning_rate,
evaluation_strategy="epoch" if script_args.eval_steps is None else "steps",
save_strategy=script_args.save_strategy,
logging_first_step=True,
logging_steps=script_args.logging_steps,
eval_steps=script_args.eval_steps,
save_steps=script_args.save_steps,
optim=script_args.optimizer_type,
warmup_steps=script_args.warmup_steps,
report_to=script_args.report_to,
bf16=script_args.bf16,
fp16=script_args.fp16,
ddp_find_unused_parameters=(script_args.gradient_checkpointing),
push_to_hub=script_args.push_to_hub,
hub_model_id=hub_model_id,
)
# 5. initialize the DPO trainer
dpo_trainer = DPOTrainer(
model=model,
args=training_args,
beta=script_args.beta,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=tokenizer,
max_length=script_args.max_length,
max_target_length=script_args.max_target_length,
max_prompt_length=script_args.max_prompt_length,
)
# Gold Eval
if script_args.gold_eval != "none":
gold_eval_dataset = load_dataset(
script_args.gold_dataset_name,
split=script_args.gold_eval_split,
)
if script_args.strip_prompt:
gold_eval_dataset = gold_eval_dataset.map(strip_prompt, batched=True)
if script_args.generate_greedy:
generation_config = GenerationConfig(
max_new_tokens=script_args.max_target_length,
do_sample=False,
num_beams=1,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id,
)
else:
generation_config = GenerationConfig(
max_new_tokens=script_args.max_target_length,
min_length=-1,
top_k=0.0,
top_p=1.0,
do_sample=True,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id,
)
if script_args.gold_eval == "full":
gold_model = create_and_prepare_gold_model(script_args)
callback = GoldModelRewardCallback(
training_args,
gold_model,
gold_eval_dataset,
tokenizer,
dpo_trainer.accelerator,
script_args.max_length,
script_args.max_prompt_length,
script_args.gold_prompt_field,
script_args.gold_target_field,
script_args.gold_load_and_unload,
script_args.log_n_samples_during_eval,
generation_config,
)
else:
if script_args.gold_eval == "gen":
callback_cls = PerplexityGenCallback
elif script_args.gold_eval == "ppl":
callback_cls = PerplexityCallback
else:
raise NotImplementedError
callback = callback_cls(
args=training_args,
dataset=gold_eval_dataset,
tokenizer=tokenizer,
accelerator=dpo_trainer.accelerator,
max_length=script_args.max_length,
max_prompt_length=script_args.max_prompt_length,
prompt_field=script_args.gold_prompt_field,
target_field=script_args.gold_target_field,
log_n_samples_during_eval=script_args.log_n_samples_during_eval,
generation_config=generation_config,
hub_model_id=hub_model_id,
)
dpo_trainer.add_callback(callback)
if script_args.eval_first_step:
class EvaluateFirstStepCallback(TrainerCallback):
def on_step_end(self, args, state, control, **kwargs):
if state.global_step == 1:
control.should_evaluate = True
dpo_trainer.add_callback(EvaluateFirstStepCallback())
# 6. train
if script_args.mode == "train":
last_checkpoint = get_last_checkpoint(script_args.output_dir)
dpo_trainer.train(resume_from_checkpoint=last_checkpoint)
elif script_args.mode == "eval":
print("evaluating")
results = dpo_trainer.evaluate()
print(results)
elif script_args.mode == "relabel":
def relabel_with_preds(batch: Dict[str, List]):
relabel_batch = {
"prompt": [],
"chosen": [],
"rejected": [],
}
for prompt, chosen, rejected, pred_chosen, pred_rejected in zip(
batch["prompt"],
batch["chosen"],
batch["rejected"],
batch["pred_chosen"],
batch["pred_rejected"],
):
relabel_batch["prompt"].append(prompt)
if pred_chosen >= pred_rejected:
relabel_batch["chosen"].append(chosen)
relabel_batch["rejected"].append(rejected)
else:
relabel_batch["chosen"].append(rejected)
relabel_batch["rejected"].append(chosen)
return relabel_batch
dpo_trainer.accelerator.print(f"Prediction {script_args.eval_split}")
preds, _, metrics = dpo_trainer.predict(eval_dataset)
(
chosen_rewards,
rejected_rewards,
policy_chosen_logps,
policy_rejected_logps,
reference_chosen_logps,
reference_rejected_logps,
) = preds
dpo_trainer.accelerator.print(f"metrics {metrics}")
if dpo_trainer.accelerator.is_local_main_process:
print("Relabelling Dataset and Saving")
dataset = load_dataset(script_args.dataset_name, split=script_args.eval_split)
dataset = dataset.add_column("pred_chosen", chosen_rewards)
dataset = dataset.add_column("pred_rejected", rejected_rewards)
relabel_dataset = dataset.map(
relabel_with_preds,
batched=True,
)
description = f"{script_args.dataset_name} relabelled with {script_args.model_name}"
relabel_dataset._info.description = description
if dpo_trainer.accelerator.is_local_main_process:
# print("Saving")
# relabel_dataset.save_to_disk(script_args.output_dir)
print("Pushing")
# repo_id = f"MilaRLHF/{os.path.basename(script_args.output_dir)}"
relabel_dataset.push_to_hub(os.path.basename(script_args.output_dir), split=script_args.eval_split)
# relabel_dataset_card = DatasetCard.load(repo_id)
# relabel_dataset_card.text = description
# relabel_dataset_card.push_to_hub(repo_id)
elif script_args.mode == "predict":
dpo_trainer.accelerator.print(f"Prediction {script_args.eval_split}")
preds, _, metrics = dpo_trainer.predict(eval_dataset)
(
chosen_rewards,
rejected_rewards,
policy_chosen_logps,
policy_rejected_logps,
reference_chosen_logps,
reference_rejected_logps,
) = preds
dpo_trainer.accelerator.print(f"metrics {metrics}")
if dpo_trainer.accelerator.is_local_main_process:
print("Relabelling Dataset and Saving")
dataset = load_dataset(script_args.dataset_name, split=script_args.eval_split)
model_basename = script_args.model_name.rsplit("/", 1)[-1]
dataset = dataset.add_column(f"pred_chosen_{model_basename}", chosen_rewards)
dataset = dataset.add_column(f"pred_rejected_{model_basename}", rejected_rewards)
if dpo_trainer.accelerator.is_local_main_process:
# print("Saving")
# relabel_dataset.save_to_disk(script_args.output_dir)
print("Pushing")
dataset.push_to_hub(os.path.basename(script_args.output_dir), split=script_args.eval_split)
|