File size: 12,187 Bytes
038b3ec
764f178
 
038b3ec
764f178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
038b3ec
764f178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f7bbd4
764f178
8f7bbd4
764f178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
---

language: en
license: mit
tags:
- keyphrase-extraction
datasets:
- midas/semeval2017
metrics:
- seqeval
widget:
- text: "Keyphrase extraction is a technique in text analysis where you extract the important keyphrases from a document. 
Thanks to these keyphrases humans can understand the content of a text very quickly and easily without reading 
it completely. Keyphrase extraction was first done primarily by human annotators, who read the text in detail 
and then wrote down the most important keyphrases. The disadvantage is that if you work with a lot of documents, 
this process can take a lot of time. 

Here is where Artificial Intelligence comes in. Currently, classical machine learning methods, that use statistical 
and linguistic features, are widely used for the extraction process. Now with deep learning, it is possible to capture 
the semantic meaning of a text even better than these classical methods. Classical methods look at the frequency, 
occurrence and order of words in the text, whereas these neural approaches can capture long-term semantic dependencies 
and context of words in a text."
  example_title: "Example 1"
- text: "In this work, we explore how to learn task specific language models aimed towards learning rich representation of keyphrases from text documents. We experiment with different masking strategies for pre-training transformer language models (LMs) in discriminative as well as generative settings. In the discriminative setting, we introduce a new pre-training objective - Keyphrase Boundary Infilling with Replacement (KBIR), showing large gains in performance (up to 9.26 points in F1) over SOTA, when LM pre-trained using KBIR is fine-tuned for the task of keyphrase extraction. In the generative setting, we introduce a new pre-training setup for BART - KeyBART, that reproduces the keyphrases related to the input text in the CatSeq format, instead of the denoised original input. This also led to gains in performance (up to 4.33 points inF1@M) over SOTA for keyphrase generation. Additionally, we also fine-tune the pre-trained language models on named entity recognition(NER), question answering (QA), relation extraction (RE), abstractive summarization and achieve comparable performance with that of the SOTA, showing that learning rich representation of keyphrases is indeed beneficial for many other fundamental NLP tasks."
  example_title: "Example 2"
model-index:
- name: ml6team/keyphrase-extraction-kbir-semeval2017
  results:
  - task: 
      type: keyphrase-extraction
      name: Keyphrase Extraction
    dataset:
      type: midas/semeval2017
      name: semeval2017
    metrics:
      - type: F1 (Seqeval) 
        value: 0.000
        name: F1 (Seqeval)
      - type: F1@M
        value: 0.401
        name: F1@M        
---
# πŸ”‘ Keyphrase Extraction Model: KBIR-semeval2017
Keyphrase extraction is a technique in text analysis where you extract the important keyphrases from a document. Thanks to these keyphrases humans can understand the content of a text very quickly and easily without reading it completely. Keyphrase extraction was first done primarily by human annotators, who read the text in detail and then wrote down the most important keyphrases. The disadvantage is that if you work with a lot of documents, this process can take a lot of time ⏳. 

Here is where Artificial Intelligence πŸ€– comes in. Currently, classical machine learning methods, that use statistical and linguistic features, are widely used for the extraction process. Now with deep learning, it is possible to capture the semantic meaning of a text even better than these classical methods. Classical methods look at the frequency, occurrence and order of words in the text, whereas these neural approaches can capture long-term semantic dependencies and context of words in a text.


## πŸ““ Model Description
This model uses [KBIR](https://huggingface.co/bloomberg/KBIR) as its base model and fine-tunes it on the [semeval2017 dataset](https://huggingface.co/datasets/midas/semeval2017). KBIR or Keyphrase Boundary Infilling with Replacement is a pre-trained model which utilizes a multi-task learning setup for optimizing a combined loss of Masked Language Modeling (MLM), Keyphrase Boundary Infilling (KBI) and Keyphrase Replacement Classification (KRC).
You can find more information about the architecture in this [paper](https://arxiv.org/abs/2112.08547).

Keyphrase extraction models are transformer models fine-tuned as a token classification problem where each word in the document is classified as being part of a keyphrase or not.

| Label | Description                     |
| ----- | ------------------------------- |
| B-KEY | At the beginning of a keyphrase |
| I-KEY | Inside a keyphrase              |
| O     | Outside a keyphrase             |

## βœ‹ Intended Uses & Limitations
### πŸ›‘ Limitations
* This keyphrase extraction model is very domain-specific and will perform very well on abstracts of scientific articles. It's not recommended to use this model for other domains, but you are free to test it out.
* Limited amount of predicted keyphrases.
* Only works for English documents.

### ❓ How To Use
```python
from transformers import (
    TokenClassificationPipeline,
    AutoModelForTokenClassification,
    AutoTokenizer,
)
from transformers.pipelines import AggregationStrategy
import numpy as np

# Define keyphrase extraction pipeline
class KeyphraseExtractionPipeline(TokenClassificationPipeline):
    def __init__(self, model, *args, **kwargs):
        super().__init__(
            model=AutoModelForTokenClassification.from_pretrained(model),
            tokenizer=AutoTokenizer.from_pretrained(model),
            *args,
            **kwargs
        )

    def postprocess(self, all_outputs):
        results = super().postprocess(
            all_outputs=all_outputs,
            aggregation_strategy=AggregationStrategy.SIMPLE,
        )
        return np.unique([result.get("word").strip() for result in results])

```

```python
# Load pipeline
model_name = "ml6team/keyphrase-extraction-kbir-semeval2017"
extractor = KeyphraseExtractionPipeline(model=model_name)
```
```python
# Inference
text = """
Keyphrase extraction is a technique in text analysis where you extract the
important keyphrases from a document. Thanks to these keyphrases humans can
understand the content of a text very quickly and easily without reading it
completely. Keyphrase extraction was first done primarily by human annotators,
who read the text in detail and then wrote down the most important keyphrases.
The disadvantage is that if you work with a lot of documents, this process
can take a lot of time. 

Here is where Artificial Intelligence comes in. Currently, classical machine
learning methods, that use statistical and linguistic features, are widely used
for the extraction process. Now with deep learning, it is possible to capture
the semantic meaning of a text even better than these classical methods.
Classical methods look at the frequency, occurrence and order of words
in the text, whereas these neural approaches can capture long-term
semantic dependencies and context of words in a text.
""".replace("\n", " ")

keyphrases = extractor(text)

print(keyphrases)

```

```
# Output
['artificial intelligence']
```

## πŸ“š Training Dataset
[Semeval2017](https://huggingface.co/datasets/midas/semeval2017) is a keyphrase extraction/generation dataset consisting of 500 English scientific paper abstracts from the ScienceDirect open access publications.  from NY Times and 10K from JPTimes and annotated by professional indexers or editors. The selected articles were evenly distributed among the domains of Computer Science, Material Sciences and Physics. Each paper has a set of keyphrases annotated by student volunteers. Each paper was double-annotated, where the second annotation was done by an expert annotator.

You can find more information in the [paper](https://arxiv.org/abs/1704.02853).

## πŸ‘·β€β™‚οΈ Training procedure
### Training parameters

| Parameter | Value |
| --------- | ------|
| Learning Rate | 1e-4 |
| Epochs | 50 |
| Early Stopping Patience | 3 |

### Preprocessing
The documents in the dataset are already preprocessed into list of words with the corresponding labels. The only thing that must be done is tokenization and the realignment of the labels so that they correspond with the right subword tokens.

```python
from datasets import load_dataset
from transformers import AutoTokenizer

# Labels
label_list = ["B", "I", "O"]
lbl2idx = {"B": 0, "I": 1, "O": 2}
idx2label = {0: "B", 1: "I", 2: "O"}

# Tokenizer
tokenizer = AutoTokenizer.from_pretrained("bloomberg/KBIR")
max_length = 512

# Dataset parameters
dataset_full_name = "midas/semeval2017"
dataset_subset = "raw"
dataset_document_column = "document"
dataset_biotags_column = "doc_bio_tags"

def preprocess_fuction(all_samples_per_split):
    tokenized_samples = tokenizer.batch_encode_plus(
        all_samples_per_split[dataset_document_column],
        padding="max_length",
        truncation=True,
        is_split_into_words=True,
        max_length=max_length,
    )
    total_adjusted_labels = []
    for k in range(0, len(tokenized_samples["input_ids"])):
        prev_wid = -1
        word_ids_list = tokenized_samples.word_ids(batch_index=k)
        existing_label_ids = all_samples_per_split[dataset_biotags_column][k]
        i = -1
        adjusted_label_ids = []

        for wid in word_ids_list:
            if wid is None:
                adjusted_label_ids.append(lbl2idx["O"])
            elif wid != prev_wid:
                i = i + 1
                adjusted_label_ids.append(lbl2idx[existing_label_ids[i]])
                prev_wid = wid
            else:
                adjusted_label_ids.append(
                    lbl2idx[
                        f"{'I' if existing_label_ids[i] == 'B' else existing_label_ids[i]}"
                    ]
                )

        total_adjusted_labels.append(adjusted_label_ids)
    tokenized_samples["labels"] = total_adjusted_labels
    return tokenized_samples

# Load dataset
dataset = load_dataset(dataset_full_name, dataset_subset)

# Preprocess dataset
tokenized_dataset = dataset.map(preprocess_fuction, batched=True)
    
```

### Postprocessing (Without Pipeline Function)
If you do not use the pipeline function, you must filter out the B and I labeled tokens. Each B and I will then be merged into a keyphrase. Finally, you need to strip the keyphrases to make sure all unnecessary spaces have been removed.
```python
# Define post_process functions
def concat_tokens_by_tag(keyphrases):
    keyphrase_tokens = []
    for id, label in keyphrases:
        if label == "B":
            keyphrase_tokens.append([id])
        elif label == "I":
            if len(keyphrase_tokens) > 0:
                keyphrase_tokens[len(keyphrase_tokens) - 1].append(id)
    return keyphrase_tokens


def extract_keyphrases(example, predictions, tokenizer, index=0):
    keyphrases_list = [
        (id, idx2label[label])
        for id, label in zip(
            np.array(example["input_ids"]).squeeze().tolist(), predictions[index]
        )
        if idx2label[label] in ["B", "I"]
    ]

    processed_keyphrases = concat_tokens_by_tag(keyphrases_list)
    extracted_kps = tokenizer.batch_decode(
        processed_keyphrases,
        skip_special_tokens=True,
        clean_up_tokenization_spaces=True,
    )
    return np.unique([kp.strip() for kp in extracted_kps])

```

## πŸ“ Evaluation Results

Traditional evaluation methods are the precision, recall and F1-score @k,m where k is the number that stands for the first k predicted keyphrases and m for the average amount of predicted keyphrases.
The model achieves the following results on the Semeval2017 test set:

| Dataset               | P@5  | R@5  | F1@5 | P@10 | R@10 | F1@10 | P@M  | R@M  | F1@M |
|:---------------------:|:----:|:----:|:----:|:----:|:----:|:-----:|:----:|:----:|:----:|
| Semeval2017 Test Set  | 0.41 | 0.20 | 0.25 | 0.37 | 0.34 | 0.34  | 0.36 | 0.50 | 0.40 |

## 🚨 Issues
Please feel free to start discussions in the Community Tab.