mjwong commited on
Commit
d4949ee
1 Parent(s): 39d8be2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +134 -3
README.md CHANGED
@@ -1,3 +1,134 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - multilingual
4
+ - en
5
+ - ar
6
+ - bg
7
+ - de
8
+ - el
9
+ - es
10
+ - fr
11
+ - hi
12
+ - ru
13
+ - sw
14
+ - th
15
+ - tr
16
+ - ur
17
+ - vi
18
+ - zh
19
+ license: mit
20
+ datasets:
21
+ - xnli
22
+ - facebook/anli
23
+ pipeline_tag: zero-shot-classification
24
+ widget:
25
+ - text: Angela Merkel ist eine Politikerin in Deutschland und Vorsitzende der CDU
26
+ candidate_labels: politics, economy, entertainment, environment
27
+ base_model: intfloat/multilingual-e5-large-instruct
28
+ model-index:
29
+ - name: multilingual-e5-large-instruct-xnli-anli
30
+ results: []
31
+ ---
32
+
33
+ # multilingual-e5-large-instruct-xnli-anli
34
+
35
+ This model is a fine-tuned version of [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) on the XNLI and ANLI dataset.
36
+
37
+ ## Model description
38
+
39
+ [Text Embeddings by Weakly-Supervised Contrastive Pre-training](https://arxiv.org/pdf/2212.03533.pdf).
40
+ Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022
41
+
42
+ ## How to use the model
43
+
44
+ ### With the zero-shot classification pipeline
45
+
46
+ The model can be loaded with the `zero-shot-classification` pipeline like so:
47
+
48
+ ```python
49
+ from transformers import pipeline
50
+ classifier = pipeline("zero-shot-classification",
51
+ model="mjwong/multilingual-e5-large-instruct-xnli-anli")
52
+ ```
53
+
54
+ You can then use this pipeline to classify sequences into any of the class names you specify.
55
+
56
+ ```python
57
+ sequence_to_classify = "Angela Merkel ist eine Politikerin in Deutschland und Vorsitzende der CDU"
58
+ candidate_labels = ["politics", "economy", "entertainment", "environment"]
59
+ classifier(sequence_to_classify, candidate_labels)
60
+ ```
61
+
62
+ If more than one candidate label can be correct, pass `multi_class=True` to calculate each class independently:
63
+
64
+ ```python
65
+ candidate_labels = ["politics", "economy", "entertainment", "environment"]
66
+ classifier(sequence_to_classify, candidate_labels, multi_label=True)
67
+ ```
68
+
69
+ ### With manual PyTorch
70
+
71
+ The model can also be applied on NLI tasks like so:
72
+
73
+ ```python
74
+ import torch
75
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
76
+
77
+ # device = "cuda:0" or "cpu"
78
+ device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
79
+
80
+ model_name = "mjwong/multilingual-e5-large-instruct-xnli-anli"
81
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
82
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
83
+
84
+ premise = "But I thought you'd sworn off coffee."
85
+ hypothesis = "I thought that you vowed to drink more coffee."
86
+
87
+ input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt")
88
+ output = model(input["input_ids"].to(device))
89
+ prediction = torch.softmax(output["logits"][0], -1).tolist()
90
+ label_names = ["entailment", "neutral", "contradiction"]
91
+ prediction = {name: round(float(pred) * 100, 2) for pred, name in zip(prediction, label_names)}
92
+ print(prediction)
93
+ ```
94
+
95
+ ### Eval results
96
+ The model was evaluated using the XNLI test sets on 15 languages: English (en), Arabic (ar), Bulgarian (bg), German (de), Greek (el), Spanish (es), French (fr), Hindi (hi), Russian (ru), Swahili (sw), Thai (th), Turkish (tr), Urdu (ur), Vietnam (vi) and Chinese (zh). The metric used is accuracy.
97
+
98
+ |Datasets|en|ar|bg|de|el|es|fr|hi|ru|sw|th|tr|ur|vi|zh|
99
+ | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
100
+ |[multilingual-e5-base-xnli](https://huggingface.co/mjwong/multilingual-e5-base-xnli)|0.849|0.768|0.803|0.800|0.792|0.809|0.805|0.738|0.782|0.728|0.756|0.766|0.713|0.787|0.785|
101
+ |[multilingual-e5-base-xnli-anli](https://huggingface.co/mjwong/multilingual-e5-base-xnli-anli)|0.811|0.711|0.751|0.759|0.746|0.778|0.765|0.685|0.728|0.662|0.705|0.716|0.683|0.736|0.740|
102
+ |[multilingual-e5-large-xnli](https://huggingface.co/mjwong/multilingual-e5-large-xnli)|0.867|0.791|0.832|0.825|0.823|0.837|0.824|0.778|0.806|0.749|0.787|0.793|0.738|0.813|0.808|
103
+ |[multilingual-e5-large-xnli-anli](https://huggingface.co/mjwong/multilingual-e5-large-xnli-anli)|0.865|0.765|0.811|0.811|0.795|0.823|0.816|0.743|0.785|0.713|0.765|0.774|0.706|0.788|0.787|
104
+ |[multilingual-e5-large-instruct-xnli](https://huggingface.co/mjwong/multilingual-e5-large-instruct-xnli)|0.864|0.793|0.839|0.821|0.824|0.837|0.823|0.770|0.810|0.744|0.784|0.791|0.716|0.807|0.807|
105
+ |[multilingual-e5-large-instruct-xnli-anli](https://huggingface.co/mjwong/multilingual-e5-large-instruct-xnli-anli)|0.861|0.780|0.816|0.808|0.806|0.825|0.816|0.758|0.799|0.727|0.775|0.780|0.721|0.787|0.795|
106
+
107
+ The model was also evaluated using the dev sets for MultiNLI and test sets for ANLI. The metric used is accuracy.
108
+
109
+ |Datasets|mnli_dev_m|mnli_dev_mm|anli_test_r1|anli_test_r2|anli_test_r3|
110
+ | :---: | :---: | :---: | :---: | :---: | :---: |
111
+ |[multilingual-e5-base-xnli](https://huggingface.co/mjwong/multilingual-e5-base-xnli)|0.835|0.837|0.287|0.276|0.301|
112
+ |[multilingual-e5-base-xnli-anli](https://huggingface.co/mjwong/multilingual-e5-base-xnli-anli)|0.814|0.811|0.588|0.437|0.439|
113
+ |[multilingual-e5-large-xnli](https://huggingface.co/mjwong/multilingual-e5-large-xnli)|0.865|0.865|0.312|0.316|0.300|
114
+ |[multilingual-e5-large-xnli-anli](https://huggingface.co/mjwong/multilingual-e5-large-xnli-anli)|0.863|0.863|0.623|0.456|0.455|
115
+ |[multilingual-e5-large-instruct-xnli](https://huggingface.co/mjwong/multilingual-e5-large-instruct-xnli)|0.867|0.866|0.341|0.330|0.323|
116
+ |[multilingual-e5-large-instruct-xnli-anli](https://huggingface.co/mjwong/multilingual-e5-large-instruct-xnli-anli)|0.862|0.862|0.615|0.459|0.462|
117
+
118
+ ### Training hyperparameters
119
+
120
+ The following hyperparameters were used during training:
121
+
122
+ - learning_rate: 2e-05
123
+ - train_batch_size: 16
124
+ - eval_batch_size: 16
125
+ - seed: 42
126
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
127
+ - lr_scheduler_type: linear
128
+ - lr_scheduler_warmup_ratio: 0.1
129
+
130
+ ### Framework versions
131
+ - Transformers 4.28.1
132
+ - Pytorch 1.12.1+cu116
133
+ - Datasets 2.19.2
134
+ - Tokenizers 0.12.1