Mask Generation
ONNX
han-cai commited on
Commit
446108c
1 Parent(s): e4668c0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -2
README.md CHANGED
@@ -3,6 +3,48 @@ license: apache-2.0
3
  pipeline_tag: mask-generation
4
  ---
5
 
6
- # EfficientViT-SAM
7
 
8
- This is the model repository for the paper [EfficientViT-SAM: Accelerated Segment Anything Model Without Performance Loss](https://arxiv.org/abs/2402.05008).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  pipeline_tag: mask-generation
4
  ---
5
 
6
+ # EfficientViT-SAM: Accelerated Segment Anything Model Without Performance Loss
7
 
8
+ - [Paper](https://arxiv.org/abs/2402.05008)
9
+ - [GitHub](https://github.com/mit-han-lab/efficientvit)
10
+ - [Demo](https://evitsam.hanlab.ai/)
11
+
12
+ ## Pretrained Models
13
+
14
+ Latency/Throughput is measured on NVIDIA Jetson AGX Orin, and NVIDIA A100 GPU with TensorRT, fp16. Data transfer time is included.
15
+
16
+ | Model | Resolution | COCO mAP | LVIS mAP | Params | MACs | Jetson Orin Latency (bs1) | A100 Throughput (bs16) | Checkpoint |
17
+ |----------------------|:----------:|:----------:|:---------:|:------------:|:---------:|:---------:|:------------:|:------------:|
18
+ | EfficientViT-SAM-L0 | 512x512 | 45.7 | 41.8 | 34.8M | 35G | 8.2ms | 762 images/s | [link](https://huggingface.co/han-cai/efficientvit-sam/resolve/main/l0.pt) |
19
+ | EfficientViT-SAM-L1 | 512x512 | 46.2 | 42.1 | 47.7M | 49G | 10.2ms | 638 images/s | [link](https://huggingface.co/han-cai/efficientvit-sam/resolve/main/l1.pt) |
20
+ | EfficientViT-SAM-L2 | 512x512 | 46.6 | 42.7 | 61.3M | 69G | 12.9ms | 538 images/s | [link](https://huggingface.co/han-cai/efficientvit-sam/resolve/main/l2.pt) |
21
+ | EfficientViT-SAM-XL0 | 1024x1024 | 47.5 | 43.9 | 117.0M | 185G | 22.5ms | 278 images/s | [link](https://huggingface.co/han-cai/efficientvit-sam/resolve/main/xl0.pt) |
22
+ | EfficientViT-SAM-XL1 | 1024x1024 | 47.8 | 44.4 | 203.3M | 322G | 37.2ms | 182 images/s | [link](https://huggingface.co/han-cai/efficientvit-sam/resolve/main/xl1.pt) |
23
+ <p align="center">
24
+ <b> Table1: Summary of All EfficientViT-SAM Variants.</b> COCO mAP and LVIS mAP are measured using ViTDet's predicted bounding boxes as the prompt. End-to-end Jetson Orin latency and A100 throughput are measured with TensorRT and fp16.
25
+ </p>
26
+
27
+ ## Usage
28
+
29
+ ```python
30
+ # segment anything
31
+ from efficientvit.sam_model_zoo import create_sam_model
32
+
33
+ efficientvit_sam = create_sam_model(
34
+ name="xl1", weight_url="assets/checkpoints/sam/xl1.pt",
35
+ )
36
+ efficientvit_sam = efficientvit_sam.cuda().eval()
37
+ ```
38
+
39
+ ```python
40
+ from efficientvit.models.efficientvit.sam import EfficientViTSamPredictor
41
+
42
+ efficientvit_sam_predictor = EfficientViTSamPredictor(efficientvit_sam)
43
+ ```
44
+
45
+ ```python
46
+ from efficientvit.models.efficientvit.sam import EfficientViTSamAutomaticMaskGenerator
47
+
48
+ efficientvit_mask_generator = EfficientViTSamAutomaticMaskGenerator(efficientvit_sam)
49
+
50
+ ```