Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.56 +/- 0.47
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e368d780460300b311c1f9bd3d3e88389156c9d84c2b3e555546efe9b51f0dd7
|
3 |
+
size 110852
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f4f451f0e50>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f4f451ec870>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 10,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1674477564710770833,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWV2wIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolngAAAAAAAAAQYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksKSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolngAAAAAAAAAerGfvam2WT/HWK2/tjq2v1huTr/11N0+7+i8P1gdZr/UEdS/v0pHP+sOwr/hXAy/foROP4aQDL5dCh4+T5vMv52Xxz7957c/0OmfPzALN7/j7Js/wzuwPfKoGj5/Mse/Agzdvvhqqj9cmFM+isrPP9UyUb9szRe+lGgOSwpLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiW8AAAAAAAAABBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqzuUaA5LCksGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]]",
|
60 |
+
"desired_goal": "[[-0.07797523 0.8504434 -1.3542718 ]\n [-1.4236667 -0.8063712 0.43326536]\n [ 1.4758586 -0.89888525 -1.6567941 ]\n [ 0.7784843 -1.5160803 -0.5482922 ]\n [ 0.8067092 -0.13727006 0.15433641]\n [-1.5984896 0.3898286 1.4367672 ]\n [ 1.2493229 -0.71501446 1.2181667 ]\n [ 0.08605149 0.1510351 -1.5562285 ]\n [-0.43173224 1.3313894 0.20663589]\n [ 1.6233685 -0.8171819 -0.14824456]]",
|
61 |
+
"observation": "[[ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYKAAAAAAAAAAEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwqFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWV2wIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolngAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksKSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolngAAAAAAAAAe3YUPrphyT3AnWI+HPwLPFyUFb3q4TA+q+H1PWFO1bx9WYE8Q3gRPuJ8Qbwouj4+nVHBPYy1Bj3Wy5c+ElcwvRq1kT3WT6M9X25TvSl7ED0yeBY+JzRKPRudCL3Jh6U8DpiPPPw13DwYjho+u3JQvbOArb1lRpA9lGgOSwpLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiW8AAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LCksGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.14498322 0.09833093 0.2213049 ]\n [ 0.00854399 -0.03651844 0.1727368 ]\n [ 0.12005933 -0.02603835 0.01578974]\n [ 0.14206032 -0.01180956 0.186257 ]\n [ 0.09439395 0.03288798 0.29647702]\n [-0.04305179 0.07114621 0.07974212]\n [-0.05161893 0.0352737 0.14694288]\n [ 0.04936614 -0.03335295 0.02020635]\n [ 0.01752856 0.02688121 0.15093267]\n [-0.05089067 -0.08471813 0.07044677]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPj4hO2/jCMCUhpRSlIwBbJRLMowBdJRHQKEhDg4Otnx1fZQoaAZoCWgPQwicqKW5FUL/v5SGlFKUaBVLMmgWR0ChIMZFgDzRdX2UKGgGaAloD0MISg1tADYAAMCUhpRSlGgVSzJoFkdAoSCJkd3jdnV9lChoBmgJaA9DCB5tHLEWvwDAlIaUUpRoFUsyaBZHQKEgTjkMkQh1fZQoaAZoCWgPQwggQlw5ewcDwJSGlFKUaBVLMmgWR0ChIA/Yao/BdX2UKGgGaAloD0MI9bhvtU58AsCUhpRSlGgVSzJoFkdAoR/RtDUmUnV9lChoBmgJaA9DCMNmgAuy5fu/lIaUUpRoFUsyaBZHQKEfl0Yj0MB1fZQoaAZoCWgPQwgvT+eKUgILwJSGlFKUaBVLMmgWR0ChH1hXKbKBdX2UKGgGaAloD0MIQtDRqpZ0/L+UhpRSlGgVSzJoFkdAoR8RB5X2d3V9lChoBmgJaA9DCLEzhc5rrP6/lIaUUpRoFUsyaBZHQKEe1rWy1NR1fZQoaAZoCWgPQwhcyY6NQDwLwJSGlFKUaBVLMmgWR0ChIz8jiXIEdX2UKGgGaAloD0MIKGA7GLFPC8CUhpRSlGgVSzJoFkdAoSL3n4fwJHV9lChoBmgJaA9DCCyeeqTBTQbAlIaUUpRoFUsyaBZHQKEiuwKSgXd1fZQoaAZoCWgPQwgPRuwTQBEIwJSGlFKUaBVLMmgWR0ChIn+glF+edX2UKGgGaAloD0MIrYkFvqJb/r+UhpRSlGgVSzJoFkdAoSJBTho/RnV9lChoBmgJaA9DCI/FNqloLPi/lIaUUpRoFUsyaBZHQKEiAx9oexR1fZQoaAZoCWgPQwgBTu/i/fj8v5SGlFKUaBVLMmgWR0ChIciiAUcodX2UKGgGaAloD0MI6E1FKoxt+r+UhpRSlGgVSzJoFkdAoSGJsCT2WnV9lChoBmgJaA9DCGH/dW7aDPy/lIaUUpRoFUsyaBZHQKEhQn4wh4d1fZQoaAZoCWgPQwhjRKLQsu4FwJSGlFKUaBVLMmgWR0ChIQh6By0bdX2UKGgGaAloD0MIuti0UghkAcCUhpRSlGgVSzJoFkdAoSV5djXnQ3V9lChoBmgJaA9DCMEaZ9MRQADAlIaUUpRoFUsyaBZHQKElMgDifg91fZQoaAZoCWgPQwhRFVPpJzwJwJSGlFKUaBVLMmgWR0ChJPVlf7aadX2UKGgGaAloD0MIERjrG5j8BsCUhpRSlGgVSzJoFkdAoSS6RW912nV9lChoBmgJaA9DCOCEQgQcAv6/lIaUUpRoFUsyaBZHQKEkfCdBjWl1fZQoaAZoCWgPQwhYkjzX9+H+v5SGlFKUaBVLMmgWR0ChJD4c3l0YdX2UKGgGaAloD0MILnHkgcjCB8CUhpRSlGgVSzJoFkdAoSQDvoePrHV9lChoBmgJaA9DCCBCXDl7p/+/lIaUUpRoFUsyaBZHQKEjxPBSDRN1fZQoaAZoCWgPQwh5rYTukvj/v5SGlFKUaBVLMmgWR0ChI32TX8O1dX2UKGgGaAloD0MIilsFMdC1CcCUhpRSlGgVSzJoFkdAoSNDjm0VrXV9lChoBmgJaA9DCPNxbagYpwbAlIaUUpRoFUsyaBZHQKEntU9ZA6d1fZQoaAZoCWgPQwium1JeK6ECwJSGlFKUaBVLMmgWR0ChJ22vbGm2dX2UKGgGaAloD0MI0Jz1Kcek+r+UhpRSlGgVSzJoFkdAoScxG6PKdXV9lChoBmgJaA9DCL9DUaBP5ALAlIaUUpRoFUsyaBZHQKEm9gJkXk51fZQoaAZoCWgPQwhStd0E37T7v5SGlFKUaBVLMmgWR0ChJreXiR4hdX2UKGgGaAloD0MIJA7ZQLoY/r+UhpRSlGgVSzJoFkdAoSZ5dt2s73V9lChoBmgJaA9DCNmTwOYcPAnAlIaUUpRoFUsyaBZHQKEmPyIYWLx1fZQoaAZoCWgPQwh+xK9YwyUBwJSGlFKUaBVLMmgWR0ChJgA2hqTKdX2UKGgGaAloD0MIyvyjb9I0BcCUhpRSlGgVSzJoFkdAoSW5DiOvMnV9lChoBmgJaA9DCG3+X3XkSA7AlIaUUpRoFUsyaBZHQKElfwiJO351fZQoaAZoCWgPQwjsTKHzGrv9v5SGlFKUaBVLMmgWR0ChKfA0j1PFdX2UKGgGaAloD0MIo3iVtU3RBsCUhpRSlGgVSzJoFkdAoSmomJFb3XV9lChoBmgJaA9DCGrcm98wsQXAlIaUUpRoFUsyaBZHQKEpa/B3zMB1fZQoaAZoCWgPQwgt6L0xBAD4v5SGlFKUaBVLMmgWR0ChKTDIBBAwdX2UKGgGaAloD0MI1PNuLCgM+7+UhpRSlGgVSzJoFkdAoSjyaPS2IHV9lChoBmgJaA9DCJaYZyWtuPq/lIaUUpRoFUsyaBZHQKEotFAE+xJ1fZQoaAZoCWgPQwg+JefEHvoHwJSGlFKUaBVLMmgWR0ChKHn2RJVbdX2UKGgGaAloD0MIL/g0Jy+SBsCUhpRSlGgVSzJoFkdAoSg7F+/gznV9lChoBmgJaA9DCAKEDyVacvi/lIaUUpRoFUsyaBZHQKEn87p3X7N1fZQoaAZoCWgPQwj+mUF8YOcFwJSGlFKUaBVLMmgWR0ChJ7oxpL26dX2UKGgGaAloD0MIn5JzYg/t+7+UhpRSlGgVSzJoFkdAoSw90DEFXHV9lChoBmgJaA9DCHQlAtU/CArAlIaUUpRoFUsyaBZHQKEr9moR7JJ1fZQoaAZoCWgPQwjRArStZt34v5SGlFKUaBVLMmgWR0ChK7oAwPAgdX2UKGgGaAloD0MIMsozL4f9BsCUhpRSlGgVSzJoFkdAoSt+606YFHV9lChoBmgJaA9DCGzrp/+sOfm/lIaUUpRoFUsyaBZHQKErQJ9Aood1fZQoaAZoCWgPQwi/8iA9RS4EwJSGlFKUaBVLMmgWR0ChKwKJMxoJdX2UKGgGaAloD0MIkXwlkBKbAsCUhpRSlGgVSzJoFkdAoSrIMF2V3XV9lChoBmgJaA9DCDoF+dnIdQDAlIaUUpRoFUsyaBZHQKEqiTxoZht1fZQoaAZoCWgPQwh9kdCWc0kHwJSGlFKUaBVLMmgWR0ChKkITfzjFdX2UKGgGaAloD0MICtejcD1K/r+UhpRSlGgVSzJoFkdAoSoH4XXRPXV9lChoBmgJaA9DCMkgdxGmaPW/lIaUUpRoFUsyaBZHQKEunviLl3h1fZQoaAZoCWgPQwizQLtDisH+v5SGlFKUaBVLMmgWR0ChLldy925hdX2UKGgGaAloD0MIMbJkjuX9BcCUhpRSlGgVSzJoFkdAoS4bBKtga3V9lChoBmgJaA9DCPDce7jkGAHAlIaUUpRoFUsyaBZHQKEt3+AmReV1fZQoaAZoCWgPQwiCH9Ww3zMCwJSGlFKUaBVLMmgWR0ChLaGygPEsdX2UKGgGaAloD0MIAizy64dY97+UhpRSlGgVSzJoFkdAoS1jq0MPSXV9lChoBmgJaA9DCPusMlNaf/e/lIaUUpRoFUsyaBZHQKEtKWBz3h51fZQoaAZoCWgPQwgS9u0kInz2v5SGlFKUaBVLMmgWR0ChLOqJEYwZdX2UKGgGaAloD0MI8SkAxjPoA8CUhpRSlGgVSzJoFkdAoSyjQu27WnV9lChoBmgJaA9DCCBe1y/YDQbAlIaUUpRoFUsyaBZHQKEsaRYigTR1fZQoaAZoCWgPQwjKGB9mL9vwv5SGlFKUaBVLMmgWR0ChMO8E3bVSdX2UKGgGaAloD0MIyEPf3crS87+UhpRSlGgVSzJoFkdAoTCnhwVCX3V9lChoBmgJaA9DCOIjYkokkQLAlIaUUpRoFUsyaBZHQKEwaxfv4M51fZQoaAZoCWgPQwjnw7MEGQEOwJSGlFKUaBVLMmgWR0ChMDAEdNnHdX2UKGgGaAloD0MI5Nwm3Cuz9L+UhpRSlGgVSzJoFkdAoS/xxDLKWHV9lChoBmgJaA9DCGjO+pRjkgfAlIaUUpRoFUsyaBZHQKEvs65Gz8h1fZQoaAZoCWgPQwh2wHXFjLD9v5SGlFKUaBVLMmgWR0ChL3lvZRKpdX2UKGgGaAloD0MIGof6Xdh6BcCUhpRSlGgVSzJoFkdAoS86ioKlYXV9lChoBmgJaA9DCHBgcqPIGve/lIaUUpRoFUsyaBZHQKEu81uR9w51fZQoaAZoCWgPQwhqTfOOUzT0v5SGlFKUaBVLMmgWR0ChLrkgntv5dX2UKGgGaAloD0MIsoLfhhgv9r+UhpRSlGgVSzJoFkdAoTNFO9FnZnV9lChoBmgJaA9DCK0x6ITQwQbAlIaUUpRoFUsyaBZHQKEy/dJJ5FB1fZQoaAZoCWgPQwgRGOsbmNz4v5SGlFKUaBVLMmgWR0ChMsFNDc/MdX2UKGgGaAloD0MIflLt0/GY9b+UhpRSlGgVSzJoFkdAoTKGC5EtunV9lChoBmgJaA9DCNHMk2sK5Pi/lIaUUpRoFUsyaBZHQKEyR83uNPx1fZQoaAZoCWgPQwjlRLsKKT/zv5SGlFKUaBVLMmgWR0ChMgnLRrrPdX2UKGgGaAloD0MIO6jEdYyr7L+UhpRSlGgVSzJoFkdAoTHPc32mHnV9lChoBmgJaA9DCECGjh1UYgHAlIaUUpRoFUsyaBZHQKExkI5YHPh1fZQoaAZoCWgPQwhZFHZR9IAGwJSGlFKUaBVLMmgWR0ChMUlsYVIqdX2UKGgGaAloD0MI+zxGeeYFAMCUhpRSlGgVSzJoFkdAoTEPW1+iJ3V9lChoBmgJaA9DCM3K9iFv+fG/lIaUUpRoFUsyaBZHQKE1ldB0ITp1fZQoaAZoCWgPQwhHV+nuOlv8v5SGlFKUaBVLMmgWR0ChNU5ftx+8dX2UKGgGaAloD0MId7zJb9FJ7r+UhpRSlGgVSzJoFkdAoTURufmLcnV9lChoBmgJaA9DCKeyKOyiqAHAlIaUUpRoFUsyaBZHQKE01pNbkfd1fZQoaAZoCWgPQwjxftx++cQAwJSGlFKUaBVLMmgWR0ChNJhPCVKPdX2UKGgGaAloD0MI1v7O9uiN87+UhpRSlGgVSzJoFkdAoTRaUxEfDHV9lChoBmgJaA9DCGx6UFCKFvS/lIaUUpRoFUsyaBZHQKE0IAS39aV1fZQoaAZoCWgPQwg/xty1hDz3v5SGlFKUaBVLMmgWR0ChM+Eo4MnadX2UKGgGaAloD0MIGTp2UImLAcCUhpRSlGgVSzJoFkdAoTOZ6dDpknV9lChoBmgJaA9DCBnFckurIfa/lIaUUpRoFUsyaBZHQKEzX81Gb1B1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 20000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0830d1a6abf430103483c6b6612704bb67e5e9fc9a76d298e55398d2f5732e41
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:849d7bb2d14f7e8fccc84b68e4384f3ed27ce654b67022f3950775fbcf6de1ef
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f4f451f0e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4f451ec870>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 10, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674477564710770833, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWV2wIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolngAAAAAAAAAQYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksKSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolngAAAAAAAAAerGfvam2WT/HWK2/tjq2v1huTr/11N0+7+i8P1gdZr/UEdS/v0pHP+sOwr/hXAy/foROP4aQDL5dCh4+T5vMv52Xxz7957c/0OmfPzALN7/j7Js/wzuwPfKoGj5/Mse/Agzdvvhqqj9cmFM+isrPP9UyUb9szRe+lGgOSwpLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiW8AAAAAAAAABBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqzuUaA5LCksGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]]", "desired_goal": "[[-0.07797523 0.8504434 -1.3542718 ]\n [-1.4236667 -0.8063712 0.43326536]\n [ 1.4758586 -0.89888525 -1.6567941 ]\n [ 0.7784843 -1.5160803 -0.5482922 ]\n [ 0.8067092 -0.13727006 0.15433641]\n [-1.5984896 0.3898286 1.4367672 ]\n [ 1.2493229 -0.71501446 1.2181667 ]\n [ 0.08605149 0.1510351 -1.5562285 ]\n [-0.43173224 1.3313894 0.20663589]\n [ 1.6233685 -0.8171819 -0.14824456]]", "observation": "[[ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYKAAAAAAAAAAEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwqFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWV2wIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolngAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksKSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolngAAAAAAAAAe3YUPrphyT3AnWI+HPwLPFyUFb3q4TA+q+H1PWFO1bx9WYE8Q3gRPuJ8Qbwouj4+nVHBPYy1Bj3Wy5c+ElcwvRq1kT3WT6M9X25TvSl7ED0yeBY+JzRKPRudCL3Jh6U8DpiPPPw13DwYjho+u3JQvbOArb1lRpA9lGgOSwpLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiW8AAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LCksGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.14498322 0.09833093 0.2213049 ]\n [ 0.00854399 -0.03651844 0.1727368 ]\n [ 0.12005933 -0.02603835 0.01578974]\n [ 0.14206032 -0.01180956 0.186257 ]\n [ 0.09439395 0.03288798 0.29647702]\n [-0.04305179 0.07114621 0.07974212]\n [-0.05161893 0.0352737 0.14694288]\n [ 0.04936614 -0.03335295 0.02020635]\n [ 0.01752856 0.02688121 0.15093267]\n [-0.05089067 -0.08471813 0.07044677]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPj4hO2/jCMCUhpRSlIwBbJRLMowBdJRHQKEhDg4Otnx1fZQoaAZoCWgPQwicqKW5FUL/v5SGlFKUaBVLMmgWR0ChIMZFgDzRdX2UKGgGaAloD0MISg1tADYAAMCUhpRSlGgVSzJoFkdAoSCJkd3jdnV9lChoBmgJaA9DCB5tHLEWvwDAlIaUUpRoFUsyaBZHQKEgTjkMkQh1fZQoaAZoCWgPQwggQlw5ewcDwJSGlFKUaBVLMmgWR0ChIA/Yao/BdX2UKGgGaAloD0MI9bhvtU58AsCUhpRSlGgVSzJoFkdAoR/RtDUmUnV9lChoBmgJaA9DCMNmgAuy5fu/lIaUUpRoFUsyaBZHQKEfl0Yj0MB1fZQoaAZoCWgPQwgvT+eKUgILwJSGlFKUaBVLMmgWR0ChH1hXKbKBdX2UKGgGaAloD0MIQtDRqpZ0/L+UhpRSlGgVSzJoFkdAoR8RB5X2d3V9lChoBmgJaA9DCLEzhc5rrP6/lIaUUpRoFUsyaBZHQKEe1rWy1NR1fZQoaAZoCWgPQwhcyY6NQDwLwJSGlFKUaBVLMmgWR0ChIz8jiXIEdX2UKGgGaAloD0MIKGA7GLFPC8CUhpRSlGgVSzJoFkdAoSL3n4fwJHV9lChoBmgJaA9DCCyeeqTBTQbAlIaUUpRoFUsyaBZHQKEiuwKSgXd1fZQoaAZoCWgPQwgPRuwTQBEIwJSGlFKUaBVLMmgWR0ChIn+glF+edX2UKGgGaAloD0MIrYkFvqJb/r+UhpRSlGgVSzJoFkdAoSJBTho/RnV9lChoBmgJaA9DCI/FNqloLPi/lIaUUpRoFUsyaBZHQKEiAx9oexR1fZQoaAZoCWgPQwgBTu/i/fj8v5SGlFKUaBVLMmgWR0ChIciiAUcodX2UKGgGaAloD0MI6E1FKoxt+r+UhpRSlGgVSzJoFkdAoSGJsCT2WnV9lChoBmgJaA9DCGH/dW7aDPy/lIaUUpRoFUsyaBZHQKEhQn4wh4d1fZQoaAZoCWgPQwhjRKLQsu4FwJSGlFKUaBVLMmgWR0ChIQh6By0bdX2UKGgGaAloD0MIuti0UghkAcCUhpRSlGgVSzJoFkdAoSV5djXnQ3V9lChoBmgJaA9DCMEaZ9MRQADAlIaUUpRoFUsyaBZHQKElMgDifg91fZQoaAZoCWgPQwhRFVPpJzwJwJSGlFKUaBVLMmgWR0ChJPVlf7aadX2UKGgGaAloD0MIERjrG5j8BsCUhpRSlGgVSzJoFkdAoSS6RW912nV9lChoBmgJaA9DCOCEQgQcAv6/lIaUUpRoFUsyaBZHQKEkfCdBjWl1fZQoaAZoCWgPQwhYkjzX9+H+v5SGlFKUaBVLMmgWR0ChJD4c3l0YdX2UKGgGaAloD0MILnHkgcjCB8CUhpRSlGgVSzJoFkdAoSQDvoePrHV9lChoBmgJaA9DCCBCXDl7p/+/lIaUUpRoFUsyaBZHQKEjxPBSDRN1fZQoaAZoCWgPQwh5rYTukvj/v5SGlFKUaBVLMmgWR0ChI32TX8O1dX2UKGgGaAloD0MIilsFMdC1CcCUhpRSlGgVSzJoFkdAoSNDjm0VrXV9lChoBmgJaA9DCPNxbagYpwbAlIaUUpRoFUsyaBZHQKEntU9ZA6d1fZQoaAZoCWgPQwium1JeK6ECwJSGlFKUaBVLMmgWR0ChJ22vbGm2dX2UKGgGaAloD0MI0Jz1Kcek+r+UhpRSlGgVSzJoFkdAoScxG6PKdXV9lChoBmgJaA9DCL9DUaBP5ALAlIaUUpRoFUsyaBZHQKEm9gJkXk51fZQoaAZoCWgPQwhStd0E37T7v5SGlFKUaBVLMmgWR0ChJreXiR4hdX2UKGgGaAloD0MIJA7ZQLoY/r+UhpRSlGgVSzJoFkdAoSZ5dt2s73V9lChoBmgJaA9DCNmTwOYcPAnAlIaUUpRoFUsyaBZHQKEmPyIYWLx1fZQoaAZoCWgPQwh+xK9YwyUBwJSGlFKUaBVLMmgWR0ChJgA2hqTKdX2UKGgGaAloD0MIyvyjb9I0BcCUhpRSlGgVSzJoFkdAoSW5DiOvMnV9lChoBmgJaA9DCG3+X3XkSA7AlIaUUpRoFUsyaBZHQKElfwiJO351fZQoaAZoCWgPQwjsTKHzGrv9v5SGlFKUaBVLMmgWR0ChKfA0j1PFdX2UKGgGaAloD0MIo3iVtU3RBsCUhpRSlGgVSzJoFkdAoSmomJFb3XV9lChoBmgJaA9DCGrcm98wsQXAlIaUUpRoFUsyaBZHQKEpa/B3zMB1fZQoaAZoCWgPQwgt6L0xBAD4v5SGlFKUaBVLMmgWR0ChKTDIBBAwdX2UKGgGaAloD0MI1PNuLCgM+7+UhpRSlGgVSzJoFkdAoSjyaPS2IHV9lChoBmgJaA9DCJaYZyWtuPq/lIaUUpRoFUsyaBZHQKEotFAE+xJ1fZQoaAZoCWgPQwg+JefEHvoHwJSGlFKUaBVLMmgWR0ChKHn2RJVbdX2UKGgGaAloD0MIL/g0Jy+SBsCUhpRSlGgVSzJoFkdAoSg7F+/gznV9lChoBmgJaA9DCAKEDyVacvi/lIaUUpRoFUsyaBZHQKEn87p3X7N1fZQoaAZoCWgPQwj+mUF8YOcFwJSGlFKUaBVLMmgWR0ChJ7oxpL26dX2UKGgGaAloD0MIn5JzYg/t+7+UhpRSlGgVSzJoFkdAoSw90DEFXHV9lChoBmgJaA9DCHQlAtU/CArAlIaUUpRoFUsyaBZHQKEr9moR7JJ1fZQoaAZoCWgPQwjRArStZt34v5SGlFKUaBVLMmgWR0ChK7oAwPAgdX2UKGgGaAloD0MIMsozL4f9BsCUhpRSlGgVSzJoFkdAoSt+606YFHV9lChoBmgJaA9DCGzrp/+sOfm/lIaUUpRoFUsyaBZHQKErQJ9Aood1fZQoaAZoCWgPQwi/8iA9RS4EwJSGlFKUaBVLMmgWR0ChKwKJMxoJdX2UKGgGaAloD0MIkXwlkBKbAsCUhpRSlGgVSzJoFkdAoSrIMF2V3XV9lChoBmgJaA9DCDoF+dnIdQDAlIaUUpRoFUsyaBZHQKEqiTxoZht1fZQoaAZoCWgPQwh9kdCWc0kHwJSGlFKUaBVLMmgWR0ChKkITfzjFdX2UKGgGaAloD0MICtejcD1K/r+UhpRSlGgVSzJoFkdAoSoH4XXRPXV9lChoBmgJaA9DCMkgdxGmaPW/lIaUUpRoFUsyaBZHQKEunviLl3h1fZQoaAZoCWgPQwizQLtDisH+v5SGlFKUaBVLMmgWR0ChLldy925hdX2UKGgGaAloD0MIMbJkjuX9BcCUhpRSlGgVSzJoFkdAoS4bBKtga3V9lChoBmgJaA9DCPDce7jkGAHAlIaUUpRoFUsyaBZHQKEt3+AmReV1fZQoaAZoCWgPQwiCH9Ww3zMCwJSGlFKUaBVLMmgWR0ChLaGygPEsdX2UKGgGaAloD0MIAizy64dY97+UhpRSlGgVSzJoFkdAoS1jq0MPSXV9lChoBmgJaA9DCPusMlNaf/e/lIaUUpRoFUsyaBZHQKEtKWBz3h51fZQoaAZoCWgPQwgS9u0kInz2v5SGlFKUaBVLMmgWR0ChLOqJEYwZdX2UKGgGaAloD0MI8SkAxjPoA8CUhpRSlGgVSzJoFkdAoSyjQu27WnV9lChoBmgJaA9DCCBe1y/YDQbAlIaUUpRoFUsyaBZHQKEsaRYigTR1fZQoaAZoCWgPQwjKGB9mL9vwv5SGlFKUaBVLMmgWR0ChMO8E3bVSdX2UKGgGaAloD0MIyEPf3crS87+UhpRSlGgVSzJoFkdAoTCnhwVCX3V9lChoBmgJaA9DCOIjYkokkQLAlIaUUpRoFUsyaBZHQKEwaxfv4M51fZQoaAZoCWgPQwjnw7MEGQEOwJSGlFKUaBVLMmgWR0ChMDAEdNnHdX2UKGgGaAloD0MI5Nwm3Cuz9L+UhpRSlGgVSzJoFkdAoS/xxDLKWHV9lChoBmgJaA9DCGjO+pRjkgfAlIaUUpRoFUsyaBZHQKEvs65Gz8h1fZQoaAZoCWgPQwh2wHXFjLD9v5SGlFKUaBVLMmgWR0ChL3lvZRKpdX2UKGgGaAloD0MIGof6Xdh6BcCUhpRSlGgVSzJoFkdAoS86ioKlYXV9lChoBmgJaA9DCHBgcqPIGve/lIaUUpRoFUsyaBZHQKEu81uR9w51fZQoaAZoCWgPQwhqTfOOUzT0v5SGlFKUaBVLMmgWR0ChLrkgntv5dX2UKGgGaAloD0MIsoLfhhgv9r+UhpRSlGgVSzJoFkdAoTNFO9FnZnV9lChoBmgJaA9DCK0x6ITQwQbAlIaUUpRoFUsyaBZHQKEy/dJJ5FB1fZQoaAZoCWgPQwgRGOsbmNz4v5SGlFKUaBVLMmgWR0ChMsFNDc/MdX2UKGgGaAloD0MIflLt0/GY9b+UhpRSlGgVSzJoFkdAoTKGC5EtunV9lChoBmgJaA9DCNHMk2sK5Pi/lIaUUpRoFUsyaBZHQKEyR83uNPx1fZQoaAZoCWgPQwjlRLsKKT/zv5SGlFKUaBVLMmgWR0ChMgnLRrrPdX2UKGgGaAloD0MIO6jEdYyr7L+UhpRSlGgVSzJoFkdAoTHPc32mHnV9lChoBmgJaA9DCECGjh1UYgHAlIaUUpRoFUsyaBZHQKExkI5YHPh1fZQoaAZoCWgPQwhZFHZR9IAGwJSGlFKUaBVLMmgWR0ChMUlsYVIqdX2UKGgGaAloD0MI+zxGeeYFAMCUhpRSlGgVSzJoFkdAoTEPW1+iJ3V9lChoBmgJaA9DCM3K9iFv+fG/lIaUUpRoFUsyaBZHQKE1ldB0ITp1fZQoaAZoCWgPQwhHV+nuOlv8v5SGlFKUaBVLMmgWR0ChNU5ftx+8dX2UKGgGaAloD0MId7zJb9FJ7r+UhpRSlGgVSzJoFkdAoTURufmLcnV9lChoBmgJaA9DCKeyKOyiqAHAlIaUUpRoFUsyaBZHQKE01pNbkfd1fZQoaAZoCWgPQwjxftx++cQAwJSGlFKUaBVLMmgWR0ChNJhPCVKPdX2UKGgGaAloD0MI1v7O9uiN87+UhpRSlGgVSzJoFkdAoTRaUxEfDHV9lChoBmgJaA9DCGx6UFCKFvS/lIaUUpRoFUsyaBZHQKE0IAS39aV1fZQoaAZoCWgPQwg/xty1hDz3v5SGlFKUaBVLMmgWR0ChM+Eo4MnadX2UKGgGaAloD0MIGTp2UImLAcCUhpRSlGgVSzJoFkdAoTOZ6dDpknV9lChoBmgJaA9DCBnFckurIfa/lIaUUpRoFUsyaBZHQKEzX81Gb1B1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 20000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (353 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.5649720846675337, "std_reward": 0.4742252963423231, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-23T13:17:42.897595"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1c725ed4b72ecd966d79405c3433556462f264f416bc2b37313a65b42736c7d
|
3 |
+
size 3056
|