misza222 commited on
Commit
6ef09aa
1 Parent(s): cfe44e8

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.56 +/- 0.47
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e368d780460300b311c1f9bd3d3e88389156c9d84c2b3e555546efe9b51f0dd7
3
+ size 110852
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f4f451f0e50>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f4f451ec870>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 10,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1674477564710770833,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWV2wIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolngAAAAAAAAAQYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksKSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolngAAAAAAAAAerGfvam2WT/HWK2/tjq2v1huTr/11N0+7+i8P1gdZr/UEdS/v0pHP+sOwr/hXAy/foROP4aQDL5dCh4+T5vMv52Xxz7957c/0OmfPzALN7/j7Js/wzuwPfKoGj5/Mse/Agzdvvhqqj9cmFM+isrPP9UyUb9szRe+lGgOSwpLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiW8AAAAAAAAABBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqzuUaA5LCksGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]]",
60
+ "desired_goal": "[[-0.07797523 0.8504434 -1.3542718 ]\n [-1.4236667 -0.8063712 0.43326536]\n [ 1.4758586 -0.89888525 -1.6567941 ]\n [ 0.7784843 -1.5160803 -0.5482922 ]\n [ 0.8067092 -0.13727006 0.15433641]\n [-1.5984896 0.3898286 1.4367672 ]\n [ 1.2493229 -0.71501446 1.2181667 ]\n [ 0.08605149 0.1510351 -1.5562285 ]\n [-0.43173224 1.3313894 0.20663589]\n [ 1.6233685 -0.8171819 -0.14824456]]",
61
+ "observation": "[[ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYKAAAAAAAAAAEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwqFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWV2wIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolngAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksKSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolngAAAAAAAAAe3YUPrphyT3AnWI+HPwLPFyUFb3q4TA+q+H1PWFO1bx9WYE8Q3gRPuJ8Qbwouj4+nVHBPYy1Bj3Wy5c+ElcwvRq1kT3WT6M9X25TvSl7ED0yeBY+JzRKPRudCL3Jh6U8DpiPPPw13DwYjho+u3JQvbOArb1lRpA9lGgOSwpLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiW8AAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LCksGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.14498322 0.09833093 0.2213049 ]\n [ 0.00854399 -0.03651844 0.1727368 ]\n [ 0.12005933 -0.02603835 0.01578974]\n [ 0.14206032 -0.01180956 0.186257 ]\n [ 0.09439395 0.03288798 0.29647702]\n [-0.04305179 0.07114621 0.07974212]\n [-0.05161893 0.0352737 0.14694288]\n [ 0.04936614 -0.03335295 0.02020635]\n [ 0.01752856 0.02688121 0.15093267]\n [-0.05089067 -0.08471813 0.07044677]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPj4hO2/jCMCUhpRSlIwBbJRLMowBdJRHQKEhDg4Otnx1fZQoaAZoCWgPQwicqKW5FUL/v5SGlFKUaBVLMmgWR0ChIMZFgDzRdX2UKGgGaAloD0MISg1tADYAAMCUhpRSlGgVSzJoFkdAoSCJkd3jdnV9lChoBmgJaA9DCB5tHLEWvwDAlIaUUpRoFUsyaBZHQKEgTjkMkQh1fZQoaAZoCWgPQwggQlw5ewcDwJSGlFKUaBVLMmgWR0ChIA/Yao/BdX2UKGgGaAloD0MI9bhvtU58AsCUhpRSlGgVSzJoFkdAoR/RtDUmUnV9lChoBmgJaA9DCMNmgAuy5fu/lIaUUpRoFUsyaBZHQKEfl0Yj0MB1fZQoaAZoCWgPQwgvT+eKUgILwJSGlFKUaBVLMmgWR0ChH1hXKbKBdX2UKGgGaAloD0MIQtDRqpZ0/L+UhpRSlGgVSzJoFkdAoR8RB5X2d3V9lChoBmgJaA9DCLEzhc5rrP6/lIaUUpRoFUsyaBZHQKEe1rWy1NR1fZQoaAZoCWgPQwhcyY6NQDwLwJSGlFKUaBVLMmgWR0ChIz8jiXIEdX2UKGgGaAloD0MIKGA7GLFPC8CUhpRSlGgVSzJoFkdAoSL3n4fwJHV9lChoBmgJaA9DCCyeeqTBTQbAlIaUUpRoFUsyaBZHQKEiuwKSgXd1fZQoaAZoCWgPQwgPRuwTQBEIwJSGlFKUaBVLMmgWR0ChIn+glF+edX2UKGgGaAloD0MIrYkFvqJb/r+UhpRSlGgVSzJoFkdAoSJBTho/RnV9lChoBmgJaA9DCI/FNqloLPi/lIaUUpRoFUsyaBZHQKEiAx9oexR1fZQoaAZoCWgPQwgBTu/i/fj8v5SGlFKUaBVLMmgWR0ChIciiAUcodX2UKGgGaAloD0MI6E1FKoxt+r+UhpRSlGgVSzJoFkdAoSGJsCT2WnV9lChoBmgJaA9DCGH/dW7aDPy/lIaUUpRoFUsyaBZHQKEhQn4wh4d1fZQoaAZoCWgPQwhjRKLQsu4FwJSGlFKUaBVLMmgWR0ChIQh6By0bdX2UKGgGaAloD0MIuti0UghkAcCUhpRSlGgVSzJoFkdAoSV5djXnQ3V9lChoBmgJaA9DCMEaZ9MRQADAlIaUUpRoFUsyaBZHQKElMgDifg91fZQoaAZoCWgPQwhRFVPpJzwJwJSGlFKUaBVLMmgWR0ChJPVlf7aadX2UKGgGaAloD0MIERjrG5j8BsCUhpRSlGgVSzJoFkdAoSS6RW912nV9lChoBmgJaA9DCOCEQgQcAv6/lIaUUpRoFUsyaBZHQKEkfCdBjWl1fZQoaAZoCWgPQwhYkjzX9+H+v5SGlFKUaBVLMmgWR0ChJD4c3l0YdX2UKGgGaAloD0MILnHkgcjCB8CUhpRSlGgVSzJoFkdAoSQDvoePrHV9lChoBmgJaA9DCCBCXDl7p/+/lIaUUpRoFUsyaBZHQKEjxPBSDRN1fZQoaAZoCWgPQwh5rYTukvj/v5SGlFKUaBVLMmgWR0ChI32TX8O1dX2UKGgGaAloD0MIilsFMdC1CcCUhpRSlGgVSzJoFkdAoSNDjm0VrXV9lChoBmgJaA9DCPNxbagYpwbAlIaUUpRoFUsyaBZHQKEntU9ZA6d1fZQoaAZoCWgPQwium1JeK6ECwJSGlFKUaBVLMmgWR0ChJ22vbGm2dX2UKGgGaAloD0MI0Jz1Kcek+r+UhpRSlGgVSzJoFkdAoScxG6PKdXV9lChoBmgJaA9DCL9DUaBP5ALAlIaUUpRoFUsyaBZHQKEm9gJkXk51fZQoaAZoCWgPQwhStd0E37T7v5SGlFKUaBVLMmgWR0ChJreXiR4hdX2UKGgGaAloD0MIJA7ZQLoY/r+UhpRSlGgVSzJoFkdAoSZ5dt2s73V9lChoBmgJaA9DCNmTwOYcPAnAlIaUUpRoFUsyaBZHQKEmPyIYWLx1fZQoaAZoCWgPQwh+xK9YwyUBwJSGlFKUaBVLMmgWR0ChJgA2hqTKdX2UKGgGaAloD0MIyvyjb9I0BcCUhpRSlGgVSzJoFkdAoSW5DiOvMnV9lChoBmgJaA9DCG3+X3XkSA7AlIaUUpRoFUsyaBZHQKElfwiJO351fZQoaAZoCWgPQwjsTKHzGrv9v5SGlFKUaBVLMmgWR0ChKfA0j1PFdX2UKGgGaAloD0MIo3iVtU3RBsCUhpRSlGgVSzJoFkdAoSmomJFb3XV9lChoBmgJaA9DCGrcm98wsQXAlIaUUpRoFUsyaBZHQKEpa/B3zMB1fZQoaAZoCWgPQwgt6L0xBAD4v5SGlFKUaBVLMmgWR0ChKTDIBBAwdX2UKGgGaAloD0MI1PNuLCgM+7+UhpRSlGgVSzJoFkdAoSjyaPS2IHV9lChoBmgJaA9DCJaYZyWtuPq/lIaUUpRoFUsyaBZHQKEotFAE+xJ1fZQoaAZoCWgPQwg+JefEHvoHwJSGlFKUaBVLMmgWR0ChKHn2RJVbdX2UKGgGaAloD0MIL/g0Jy+SBsCUhpRSlGgVSzJoFkdAoSg7F+/gznV9lChoBmgJaA9DCAKEDyVacvi/lIaUUpRoFUsyaBZHQKEn87p3X7N1fZQoaAZoCWgPQwj+mUF8YOcFwJSGlFKUaBVLMmgWR0ChJ7oxpL26dX2UKGgGaAloD0MIn5JzYg/t+7+UhpRSlGgVSzJoFkdAoSw90DEFXHV9lChoBmgJaA9DCHQlAtU/CArAlIaUUpRoFUsyaBZHQKEr9moR7JJ1fZQoaAZoCWgPQwjRArStZt34v5SGlFKUaBVLMmgWR0ChK7oAwPAgdX2UKGgGaAloD0MIMsozL4f9BsCUhpRSlGgVSzJoFkdAoSt+606YFHV9lChoBmgJaA9DCGzrp/+sOfm/lIaUUpRoFUsyaBZHQKErQJ9Aood1fZQoaAZoCWgPQwi/8iA9RS4EwJSGlFKUaBVLMmgWR0ChKwKJMxoJdX2UKGgGaAloD0MIkXwlkBKbAsCUhpRSlGgVSzJoFkdAoSrIMF2V3XV9lChoBmgJaA9DCDoF+dnIdQDAlIaUUpRoFUsyaBZHQKEqiTxoZht1fZQoaAZoCWgPQwh9kdCWc0kHwJSGlFKUaBVLMmgWR0ChKkITfzjFdX2UKGgGaAloD0MICtejcD1K/r+UhpRSlGgVSzJoFkdAoSoH4XXRPXV9lChoBmgJaA9DCMkgdxGmaPW/lIaUUpRoFUsyaBZHQKEunviLl3h1fZQoaAZoCWgPQwizQLtDisH+v5SGlFKUaBVLMmgWR0ChLldy925hdX2UKGgGaAloD0MIMbJkjuX9BcCUhpRSlGgVSzJoFkdAoS4bBKtga3V9lChoBmgJaA9DCPDce7jkGAHAlIaUUpRoFUsyaBZHQKEt3+AmReV1fZQoaAZoCWgPQwiCH9Ww3zMCwJSGlFKUaBVLMmgWR0ChLaGygPEsdX2UKGgGaAloD0MIAizy64dY97+UhpRSlGgVSzJoFkdAoS1jq0MPSXV9lChoBmgJaA9DCPusMlNaf/e/lIaUUpRoFUsyaBZHQKEtKWBz3h51fZQoaAZoCWgPQwgS9u0kInz2v5SGlFKUaBVLMmgWR0ChLOqJEYwZdX2UKGgGaAloD0MI8SkAxjPoA8CUhpRSlGgVSzJoFkdAoSyjQu27WnV9lChoBmgJaA9DCCBe1y/YDQbAlIaUUpRoFUsyaBZHQKEsaRYigTR1fZQoaAZoCWgPQwjKGB9mL9vwv5SGlFKUaBVLMmgWR0ChMO8E3bVSdX2UKGgGaAloD0MIyEPf3crS87+UhpRSlGgVSzJoFkdAoTCnhwVCX3V9lChoBmgJaA9DCOIjYkokkQLAlIaUUpRoFUsyaBZHQKEwaxfv4M51fZQoaAZoCWgPQwjnw7MEGQEOwJSGlFKUaBVLMmgWR0ChMDAEdNnHdX2UKGgGaAloD0MI5Nwm3Cuz9L+UhpRSlGgVSzJoFkdAoS/xxDLKWHV9lChoBmgJaA9DCGjO+pRjkgfAlIaUUpRoFUsyaBZHQKEvs65Gz8h1fZQoaAZoCWgPQwh2wHXFjLD9v5SGlFKUaBVLMmgWR0ChL3lvZRKpdX2UKGgGaAloD0MIGof6Xdh6BcCUhpRSlGgVSzJoFkdAoS86ioKlYXV9lChoBmgJaA9DCHBgcqPIGve/lIaUUpRoFUsyaBZHQKEu81uR9w51fZQoaAZoCWgPQwhqTfOOUzT0v5SGlFKUaBVLMmgWR0ChLrkgntv5dX2UKGgGaAloD0MIsoLfhhgv9r+UhpRSlGgVSzJoFkdAoTNFO9FnZnV9lChoBmgJaA9DCK0x6ITQwQbAlIaUUpRoFUsyaBZHQKEy/dJJ5FB1fZQoaAZoCWgPQwgRGOsbmNz4v5SGlFKUaBVLMmgWR0ChMsFNDc/MdX2UKGgGaAloD0MIflLt0/GY9b+UhpRSlGgVSzJoFkdAoTKGC5EtunV9lChoBmgJaA9DCNHMk2sK5Pi/lIaUUpRoFUsyaBZHQKEyR83uNPx1fZQoaAZoCWgPQwjlRLsKKT/zv5SGlFKUaBVLMmgWR0ChMgnLRrrPdX2UKGgGaAloD0MIO6jEdYyr7L+UhpRSlGgVSzJoFkdAoTHPc32mHnV9lChoBmgJaA9DCECGjh1UYgHAlIaUUpRoFUsyaBZHQKExkI5YHPh1fZQoaAZoCWgPQwhZFHZR9IAGwJSGlFKUaBVLMmgWR0ChMUlsYVIqdX2UKGgGaAloD0MI+zxGeeYFAMCUhpRSlGgVSzJoFkdAoTEPW1+iJ3V9lChoBmgJaA9DCM3K9iFv+fG/lIaUUpRoFUsyaBZHQKE1ldB0ITp1fZQoaAZoCWgPQwhHV+nuOlv8v5SGlFKUaBVLMmgWR0ChNU5ftx+8dX2UKGgGaAloD0MId7zJb9FJ7r+UhpRSlGgVSzJoFkdAoTURufmLcnV9lChoBmgJaA9DCKeyKOyiqAHAlIaUUpRoFUsyaBZHQKE01pNbkfd1fZQoaAZoCWgPQwjxftx++cQAwJSGlFKUaBVLMmgWR0ChNJhPCVKPdX2UKGgGaAloD0MI1v7O9uiN87+UhpRSlGgVSzJoFkdAoTRaUxEfDHV9lChoBmgJaA9DCGx6UFCKFvS/lIaUUpRoFUsyaBZHQKE0IAS39aV1fZQoaAZoCWgPQwg/xty1hDz3v5SGlFKUaBVLMmgWR0ChM+Eo4MnadX2UKGgGaAloD0MIGTp2UImLAcCUhpRSlGgVSzJoFkdAoTOZ6dDpknV9lChoBmgJaA9DCBnFckurIfa/lIaUUpRoFUsyaBZHQKEzX81Gb1B1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 20000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0830d1a6abf430103483c6b6612704bb67e5e9fc9a76d298e55398d2f5732e41
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:849d7bb2d14f7e8fccc84b68e4384f3ed27ce654b67022f3950775fbcf6de1ef
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f4f451f0e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4f451ec870>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 10, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674477564710770833, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWV2wIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolngAAAAAAAAAQYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/QYG1PmQBqLsqhgA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksKSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolngAAAAAAAAAerGfvam2WT/HWK2/tjq2v1huTr/11N0+7+i8P1gdZr/UEdS/v0pHP+sOwr/hXAy/foROP4aQDL5dCh4+T5vMv52Xxz7957c/0OmfPzALN7/j7Js/wzuwPfKoGj5/Mse/Agzdvvhqqj9cmFM+isrPP9UyUb9szRe+lGgOSwpLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiW8AAAAAAAAABBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqztBgbU+ZAGouyqGAD8X5py7VfCUOowJqzuUaA5LCksGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]\n [ 0.35450175 -0.00512712 0.5020472 ]]", "desired_goal": "[[-0.07797523 0.8504434 -1.3542718 ]\n [-1.4236667 -0.8063712 0.43326536]\n [ 1.4758586 -0.89888525 -1.6567941 ]\n [ 0.7784843 -1.5160803 -0.5482922 ]\n [ 0.8067092 -0.13727006 0.15433641]\n [-1.5984896 0.3898286 1.4367672 ]\n [ 1.2493229 -0.71501446 1.2181667 ]\n [ 0.08605149 0.1510351 -1.5562285 ]\n [-0.43173224 1.3313894 0.20663589]\n [ 1.6233685 -0.8171819 -0.14824456]]", "observation": "[[ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]\n [ 0.35450175 -0.00512712 0.5020472 -0.00478817 0.00113631 0.00521964]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYKAAAAAAAAAAEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwqFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWV2wIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolngAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksKSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolngAAAAAAAAAe3YUPrphyT3AnWI+HPwLPFyUFb3q4TA+q+H1PWFO1bx9WYE8Q3gRPuJ8Qbwouj4+nVHBPYy1Bj3Wy5c+ElcwvRq1kT3WT6M9X25TvSl7ED0yeBY+JzRKPRudCL3Jh6U8DpiPPPw13DwYjho+u3JQvbOArb1lRpA9lGgOSwpLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiW8AAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LCksGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.14498322 0.09833093 0.2213049 ]\n [ 0.00854399 -0.03651844 0.1727368 ]\n [ 0.12005933 -0.02603835 0.01578974]\n [ 0.14206032 -0.01180956 0.186257 ]\n [ 0.09439395 0.03288798 0.29647702]\n [-0.04305179 0.07114621 0.07974212]\n [-0.05161893 0.0352737 0.14694288]\n [ 0.04936614 -0.03335295 0.02020635]\n [ 0.01752856 0.02688121 0.15093267]\n [-0.05089067 -0.08471813 0.07044677]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPj4hO2/jCMCUhpRSlIwBbJRLMowBdJRHQKEhDg4Otnx1fZQoaAZoCWgPQwicqKW5FUL/v5SGlFKUaBVLMmgWR0ChIMZFgDzRdX2UKGgGaAloD0MISg1tADYAAMCUhpRSlGgVSzJoFkdAoSCJkd3jdnV9lChoBmgJaA9DCB5tHLEWvwDAlIaUUpRoFUsyaBZHQKEgTjkMkQh1fZQoaAZoCWgPQwggQlw5ewcDwJSGlFKUaBVLMmgWR0ChIA/Yao/BdX2UKGgGaAloD0MI9bhvtU58AsCUhpRSlGgVSzJoFkdAoR/RtDUmUnV9lChoBmgJaA9DCMNmgAuy5fu/lIaUUpRoFUsyaBZHQKEfl0Yj0MB1fZQoaAZoCWgPQwgvT+eKUgILwJSGlFKUaBVLMmgWR0ChH1hXKbKBdX2UKGgGaAloD0MIQtDRqpZ0/L+UhpRSlGgVSzJoFkdAoR8RB5X2d3V9lChoBmgJaA9DCLEzhc5rrP6/lIaUUpRoFUsyaBZHQKEe1rWy1NR1fZQoaAZoCWgPQwhcyY6NQDwLwJSGlFKUaBVLMmgWR0ChIz8jiXIEdX2UKGgGaAloD0MIKGA7GLFPC8CUhpRSlGgVSzJoFkdAoSL3n4fwJHV9lChoBmgJaA9DCCyeeqTBTQbAlIaUUpRoFUsyaBZHQKEiuwKSgXd1fZQoaAZoCWgPQwgPRuwTQBEIwJSGlFKUaBVLMmgWR0ChIn+glF+edX2UKGgGaAloD0MIrYkFvqJb/r+UhpRSlGgVSzJoFkdAoSJBTho/RnV9lChoBmgJaA9DCI/FNqloLPi/lIaUUpRoFUsyaBZHQKEiAx9oexR1fZQoaAZoCWgPQwgBTu/i/fj8v5SGlFKUaBVLMmgWR0ChIciiAUcodX2UKGgGaAloD0MI6E1FKoxt+r+UhpRSlGgVSzJoFkdAoSGJsCT2WnV9lChoBmgJaA9DCGH/dW7aDPy/lIaUUpRoFUsyaBZHQKEhQn4wh4d1fZQoaAZoCWgPQwhjRKLQsu4FwJSGlFKUaBVLMmgWR0ChIQh6By0bdX2UKGgGaAloD0MIuti0UghkAcCUhpRSlGgVSzJoFkdAoSV5djXnQ3V9lChoBmgJaA9DCMEaZ9MRQADAlIaUUpRoFUsyaBZHQKElMgDifg91fZQoaAZoCWgPQwhRFVPpJzwJwJSGlFKUaBVLMmgWR0ChJPVlf7aadX2UKGgGaAloD0MIERjrG5j8BsCUhpRSlGgVSzJoFkdAoSS6RW912nV9lChoBmgJaA9DCOCEQgQcAv6/lIaUUpRoFUsyaBZHQKEkfCdBjWl1fZQoaAZoCWgPQwhYkjzX9+H+v5SGlFKUaBVLMmgWR0ChJD4c3l0YdX2UKGgGaAloD0MILnHkgcjCB8CUhpRSlGgVSzJoFkdAoSQDvoePrHV9lChoBmgJaA9DCCBCXDl7p/+/lIaUUpRoFUsyaBZHQKEjxPBSDRN1fZQoaAZoCWgPQwh5rYTukvj/v5SGlFKUaBVLMmgWR0ChI32TX8O1dX2UKGgGaAloD0MIilsFMdC1CcCUhpRSlGgVSzJoFkdAoSNDjm0VrXV9lChoBmgJaA9DCPNxbagYpwbAlIaUUpRoFUsyaBZHQKEntU9ZA6d1fZQoaAZoCWgPQwium1JeK6ECwJSGlFKUaBVLMmgWR0ChJ22vbGm2dX2UKGgGaAloD0MI0Jz1Kcek+r+UhpRSlGgVSzJoFkdAoScxG6PKdXV9lChoBmgJaA9DCL9DUaBP5ALAlIaUUpRoFUsyaBZHQKEm9gJkXk51fZQoaAZoCWgPQwhStd0E37T7v5SGlFKUaBVLMmgWR0ChJreXiR4hdX2UKGgGaAloD0MIJA7ZQLoY/r+UhpRSlGgVSzJoFkdAoSZ5dt2s73V9lChoBmgJaA9DCNmTwOYcPAnAlIaUUpRoFUsyaBZHQKEmPyIYWLx1fZQoaAZoCWgPQwh+xK9YwyUBwJSGlFKUaBVLMmgWR0ChJgA2hqTKdX2UKGgGaAloD0MIyvyjb9I0BcCUhpRSlGgVSzJoFkdAoSW5DiOvMnV9lChoBmgJaA9DCG3+X3XkSA7AlIaUUpRoFUsyaBZHQKElfwiJO351fZQoaAZoCWgPQwjsTKHzGrv9v5SGlFKUaBVLMmgWR0ChKfA0j1PFdX2UKGgGaAloD0MIo3iVtU3RBsCUhpRSlGgVSzJoFkdAoSmomJFb3XV9lChoBmgJaA9DCGrcm98wsQXAlIaUUpRoFUsyaBZHQKEpa/B3zMB1fZQoaAZoCWgPQwgt6L0xBAD4v5SGlFKUaBVLMmgWR0ChKTDIBBAwdX2UKGgGaAloD0MI1PNuLCgM+7+UhpRSlGgVSzJoFkdAoSjyaPS2IHV9lChoBmgJaA9DCJaYZyWtuPq/lIaUUpRoFUsyaBZHQKEotFAE+xJ1fZQoaAZoCWgPQwg+JefEHvoHwJSGlFKUaBVLMmgWR0ChKHn2RJVbdX2UKGgGaAloD0MIL/g0Jy+SBsCUhpRSlGgVSzJoFkdAoSg7F+/gznV9lChoBmgJaA9DCAKEDyVacvi/lIaUUpRoFUsyaBZHQKEn87p3X7N1fZQoaAZoCWgPQwj+mUF8YOcFwJSGlFKUaBVLMmgWR0ChJ7oxpL26dX2UKGgGaAloD0MIn5JzYg/t+7+UhpRSlGgVSzJoFkdAoSw90DEFXHV9lChoBmgJaA9DCHQlAtU/CArAlIaUUpRoFUsyaBZHQKEr9moR7JJ1fZQoaAZoCWgPQwjRArStZt34v5SGlFKUaBVLMmgWR0ChK7oAwPAgdX2UKGgGaAloD0MIMsozL4f9BsCUhpRSlGgVSzJoFkdAoSt+606YFHV9lChoBmgJaA9DCGzrp/+sOfm/lIaUUpRoFUsyaBZHQKErQJ9Aood1fZQoaAZoCWgPQwi/8iA9RS4EwJSGlFKUaBVLMmgWR0ChKwKJMxoJdX2UKGgGaAloD0MIkXwlkBKbAsCUhpRSlGgVSzJoFkdAoSrIMF2V3XV9lChoBmgJaA9DCDoF+dnIdQDAlIaUUpRoFUsyaBZHQKEqiTxoZht1fZQoaAZoCWgPQwh9kdCWc0kHwJSGlFKUaBVLMmgWR0ChKkITfzjFdX2UKGgGaAloD0MICtejcD1K/r+UhpRSlGgVSzJoFkdAoSoH4XXRPXV9lChoBmgJaA9DCMkgdxGmaPW/lIaUUpRoFUsyaBZHQKEunviLl3h1fZQoaAZoCWgPQwizQLtDisH+v5SGlFKUaBVLMmgWR0ChLldy925hdX2UKGgGaAloD0MIMbJkjuX9BcCUhpRSlGgVSzJoFkdAoS4bBKtga3V9lChoBmgJaA9DCPDce7jkGAHAlIaUUpRoFUsyaBZHQKEt3+AmReV1fZQoaAZoCWgPQwiCH9Ww3zMCwJSGlFKUaBVLMmgWR0ChLaGygPEsdX2UKGgGaAloD0MIAizy64dY97+UhpRSlGgVSzJoFkdAoS1jq0MPSXV9lChoBmgJaA9DCPusMlNaf/e/lIaUUpRoFUsyaBZHQKEtKWBz3h51fZQoaAZoCWgPQwgS9u0kInz2v5SGlFKUaBVLMmgWR0ChLOqJEYwZdX2UKGgGaAloD0MI8SkAxjPoA8CUhpRSlGgVSzJoFkdAoSyjQu27WnV9lChoBmgJaA9DCCBe1y/YDQbAlIaUUpRoFUsyaBZHQKEsaRYigTR1fZQoaAZoCWgPQwjKGB9mL9vwv5SGlFKUaBVLMmgWR0ChMO8E3bVSdX2UKGgGaAloD0MIyEPf3crS87+UhpRSlGgVSzJoFkdAoTCnhwVCX3V9lChoBmgJaA9DCOIjYkokkQLAlIaUUpRoFUsyaBZHQKEwaxfv4M51fZQoaAZoCWgPQwjnw7MEGQEOwJSGlFKUaBVLMmgWR0ChMDAEdNnHdX2UKGgGaAloD0MI5Nwm3Cuz9L+UhpRSlGgVSzJoFkdAoS/xxDLKWHV9lChoBmgJaA9DCGjO+pRjkgfAlIaUUpRoFUsyaBZHQKEvs65Gz8h1fZQoaAZoCWgPQwh2wHXFjLD9v5SGlFKUaBVLMmgWR0ChL3lvZRKpdX2UKGgGaAloD0MIGof6Xdh6BcCUhpRSlGgVSzJoFkdAoS86ioKlYXV9lChoBmgJaA9DCHBgcqPIGve/lIaUUpRoFUsyaBZHQKEu81uR9w51fZQoaAZoCWgPQwhqTfOOUzT0v5SGlFKUaBVLMmgWR0ChLrkgntv5dX2UKGgGaAloD0MIsoLfhhgv9r+UhpRSlGgVSzJoFkdAoTNFO9FnZnV9lChoBmgJaA9DCK0x6ITQwQbAlIaUUpRoFUsyaBZHQKEy/dJJ5FB1fZQoaAZoCWgPQwgRGOsbmNz4v5SGlFKUaBVLMmgWR0ChMsFNDc/MdX2UKGgGaAloD0MIflLt0/GY9b+UhpRSlGgVSzJoFkdAoTKGC5EtunV9lChoBmgJaA9DCNHMk2sK5Pi/lIaUUpRoFUsyaBZHQKEyR83uNPx1fZQoaAZoCWgPQwjlRLsKKT/zv5SGlFKUaBVLMmgWR0ChMgnLRrrPdX2UKGgGaAloD0MIO6jEdYyr7L+UhpRSlGgVSzJoFkdAoTHPc32mHnV9lChoBmgJaA9DCECGjh1UYgHAlIaUUpRoFUsyaBZHQKExkI5YHPh1fZQoaAZoCWgPQwhZFHZR9IAGwJSGlFKUaBVLMmgWR0ChMUlsYVIqdX2UKGgGaAloD0MI+zxGeeYFAMCUhpRSlGgVSzJoFkdAoTEPW1+iJ3V9lChoBmgJaA9DCM3K9iFv+fG/lIaUUpRoFUsyaBZHQKE1ldB0ITp1fZQoaAZoCWgPQwhHV+nuOlv8v5SGlFKUaBVLMmgWR0ChNU5ftx+8dX2UKGgGaAloD0MId7zJb9FJ7r+UhpRSlGgVSzJoFkdAoTURufmLcnV9lChoBmgJaA9DCKeyKOyiqAHAlIaUUpRoFUsyaBZHQKE01pNbkfd1fZQoaAZoCWgPQwjxftx++cQAwJSGlFKUaBVLMmgWR0ChNJhPCVKPdX2UKGgGaAloD0MI1v7O9uiN87+UhpRSlGgVSzJoFkdAoTRaUxEfDHV9lChoBmgJaA9DCGx6UFCKFvS/lIaUUpRoFUsyaBZHQKE0IAS39aV1fZQoaAZoCWgPQwg/xty1hDz3v5SGlFKUaBVLMmgWR0ChM+Eo4MnadX2UKGgGaAloD0MIGTp2UImLAcCUhpRSlGgVSzJoFkdAoTOZ6dDpknV9lChoBmgJaA9DCBnFckurIfa/lIaUUpRoFUsyaBZHQKEzX81Gb1B1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 20000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (353 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.5649720846675337, "std_reward": 0.4742252963423231, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-23T13:17:42.897595"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1c725ed4b72ecd966d79405c3433556462f264f416bc2b37313a65b42736c7d
3
+ size 3056