--- license: apache-2.0 tags: - finetuned pipeline_tag: text-generation inference: true widget: - messages: - role: user content: What is your favorite condiment? --- --- license: apache-2.0 language: - en --- # Model Card for Mistral-7B-Instruct-v0.1 The Mistral-7B-Instruct-v0.1 Large Language Model (LLM) is a instruct fine-tuned version of the [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) generative text model using a variety of publicly available conversation datasets. For full details of this model please read our [paper](https://arxiv.org/abs/2310.06825) and [release blog post](https://mistral.ai/news/announcing-mistral-7b/). Mistral-7B-Instruct-v0.1 has the following characteristics: - 7.3B parameters - Byte-fallback BPE tokenizer - Grouped-Query Attention - 8k context window - 4k Sliding-Window Attention - 32000 vocab size ## How to use It is recommended to use `mistralai/Mistral-7B-Instruct-v0.1` with [mistral_inference](https://github.com/mistralai/mistral-inference) and [mistral_common](https://github.com/mistralai/mistral-common). For HF `transformers` code snippets, please keep scrolling. ## Generate with `mistral_inference` and `mistral_common` ### Install dependencies ``` pip install mistral_inference mistral_common ``` ### Download model ```py from huggingface_hub import snapshot_download from pathlib import Path mistral_models_path = Path.home().joinpath('mistral_models', '7B-Instruct-v0.1') mistral_models_path.mkdir(parents=True, exist_ok=True) snapshot_download(repo_id="mistralai/Mistral-7B-Instruct-v0.1", allow_patterns=["params.json", "consolidated.safetensors", "tokenizer.model"], local_dir=mistral_models_path) ``` ### Chat After installing `mistral_inference`, a `mistral-chat` CLI command should be available in your environment. You can chat with the model using ``` mistral-chat $HOME/mistral_models/7B-Instruct-v0.1 --instruct --max_tokens 256 ``` ### Instruct following ```py from mistral_inference.model import Transformer from mistral_inference.generate import generate from mistral_common.tokens.tokenizers.mistral import MistralTokenizer from mistral_common.protocol.instruct.messages import UserMessage from mistral_common.protocol.instruct.request import ChatCompletionRequest tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tokenizer.model") # tokenizer = MistralTokenizer.v1() model = Transformer.from_folder(mistral_models_path) completion_request = ChatCompletionRequest(messages=[UserMessage(content="Explain Machine Learning to me in a nutshell.")]) tokens = tokenizer.encode_chat_completion(completion_request).tokens out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id) result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0]) print(result) ``` ## Generate with `transformers` ### Install dependencies ``` pip install transformers ``` ### Instruct following ```py from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1") model.to("cuda") tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1") messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] messages_prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, ) inputs = tokenizer(tool_use_prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=1000) result = tokenizer.decode(outputs[0], skip_special_tokens=True) print(result) ``` Or: ```py from transformers import pipeline messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] chatbot = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.1") result = chatbot(messages) print(result) ``` ## Limitations The Mistral 7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance. It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs. ## The Mistral AI Team Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.