Create modeling_protst.py
Browse files- modeling_protst.py +214 -0
modeling_protst.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from typing import Optional, Tuple, Union
|
5 |
+
from dataclasses import dataclass
|
6 |
+
from transformers import PreTrainedModel
|
7 |
+
from transformers.modeling_outputs import ModelOutput
|
8 |
+
from transformers.models.esm import EsmPreTrainedModel, EsmModel
|
9 |
+
from transformers.models.bert import BertPreTrainedModel, BertModel
|
10 |
+
from .configuration_protst import ProtSTConfig
|
11 |
+
|
12 |
+
|
13 |
+
@dataclass
|
14 |
+
class EsmProteinRepresentationOutput(ModelOutput):
|
15 |
+
|
16 |
+
protein_feature: torch.FloatTensor = None
|
17 |
+
residue_feature: torch.FloatTensor = None
|
18 |
+
|
19 |
+
|
20 |
+
@dataclass
|
21 |
+
class BertTextRepresentationOutput(ModelOutput):
|
22 |
+
|
23 |
+
text_feature: torch.FloatTensor = None
|
24 |
+
word_feature: torch.FloatTensor = None
|
25 |
+
|
26 |
+
|
27 |
+
@dataclass
|
28 |
+
class ProtSTClassificationOutput(ModelOutput):
|
29 |
+
|
30 |
+
loss: Optional[torch.FloatTensor] = None
|
31 |
+
logits: torch.FloatTensor = None
|
32 |
+
|
33 |
+
class ProtSTHead(nn.Module):
|
34 |
+
def __init__(self, config, out_dim=512):
|
35 |
+
super().__init__()
|
36 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
37 |
+
self.out_proj = nn.Linear(config.hidden_size, out_dim)
|
38 |
+
|
39 |
+
def forward(self, x):
|
40 |
+
x = self.dense(x)
|
41 |
+
x = nn.functional.relu(x)
|
42 |
+
x = self.out_proj(x)
|
43 |
+
return x
|
44 |
+
|
45 |
+
|
46 |
+
class BertForPubMed(BertPreTrainedModel):
|
47 |
+
def __init__(self, config):
|
48 |
+
super().__init__(config)
|
49 |
+
|
50 |
+
self.pad_token_id = config.pad_token_id
|
51 |
+
self.cls_token_id = config.cls_token_id
|
52 |
+
self.sep_token_id = config.sep_token_id
|
53 |
+
|
54 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
55 |
+
self.text_mlp = ProtSTHead(config)
|
56 |
+
self.word_mlp = ProtSTHead(config)
|
57 |
+
|
58 |
+
self.post_init() # NOTE
|
59 |
+
|
60 |
+
def forward(
|
61 |
+
self,
|
62 |
+
input_ids: Optional[torch.Tensor] = None,
|
63 |
+
attention_mask: Optional[torch.Tensor] = None,
|
64 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
65 |
+
position_ids: Optional[torch.Tensor] = None,
|
66 |
+
head_mask: Optional[torch.Tensor] = None,
|
67 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
68 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
69 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
70 |
+
output_attentions: Optional[bool] = None,
|
71 |
+
output_hidden_states: Optional[bool] = None,
|
72 |
+
return_dict: Optional[bool] = None,
|
73 |
+
) -> Union[Tuple[torch.Tensor], ModelOutput]:
|
74 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
75 |
+
|
76 |
+
outputs = self.bert(
|
77 |
+
input_ids,
|
78 |
+
attention_mask=attention_mask,
|
79 |
+
token_type_ids=token_type_ids,
|
80 |
+
position_ids=position_ids,
|
81 |
+
head_mask=head_mask,
|
82 |
+
inputs_embeds=inputs_embeds,
|
83 |
+
encoder_hidden_states=encoder_hidden_states,
|
84 |
+
encoder_attention_mask=encoder_attention_mask,
|
85 |
+
output_attentions=output_attentions,
|
86 |
+
output_hidden_states=output_hidden_states,
|
87 |
+
return_dict=return_dict,
|
88 |
+
)
|
89 |
+
word_feature = outputs.last_hidden_state
|
90 |
+
is_special = (input_ids == self.cls_token_id) | (input_ids == self.sep_token_id) | (input_ids == self.pad_token_id)
|
91 |
+
special_mask = (~is_special).to(torch.int64).unsqueeze(-1)
|
92 |
+
pooled_feature = ((word_feature * special_mask).sum(1) / (special_mask.sum(1) + 1.0e-6)).to(word_feature.dtype)
|
93 |
+
pooled_feature = self.text_mlp(pooled_feature)
|
94 |
+
word_feature = self.word_mlp(word_feature)
|
95 |
+
|
96 |
+
if not return_dict:
|
97 |
+
return (pooled_feature, word_feature)
|
98 |
+
|
99 |
+
return BertTextRepresentationOutput(text_feature=pooled_feature, word_feature=word_feature)
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
class EsmForProteinRepresentation(EsmPreTrainedModel):
|
105 |
+
def __init__(self, config):
|
106 |
+
super().__init__(config)
|
107 |
+
|
108 |
+
self.cls_token_id = config.cls_token_id
|
109 |
+
self.pad_token_id = config.pad_token_id
|
110 |
+
self.eos_token_id = config.eos_token_id
|
111 |
+
|
112 |
+
self.esm = EsmModel(config, add_pooling_layer=False)
|
113 |
+
|
114 |
+
self.post_init() # NOTE
|
115 |
+
|
116 |
+
def forward(
|
117 |
+
self,
|
118 |
+
input_ids: Optional[torch.LongTensor] = None,
|
119 |
+
attention_mask: Optional[torch.Tensor] = None,
|
120 |
+
position_ids: Optional[torch.LongTensor] = None,
|
121 |
+
head_mask: Optional[torch.Tensor] = None,
|
122 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
123 |
+
output_attentions: Optional[bool] = None,
|
124 |
+
output_hidden_states: Optional[bool] = None,
|
125 |
+
return_dict: Optional[bool] = None,
|
126 |
+
) -> Union[Tuple, EsmProteinRepresentationOutput]:
|
127 |
+
|
128 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
129 |
+
|
130 |
+
outputs = self.esm(
|
131 |
+
input_ids,
|
132 |
+
attention_mask=attention_mask,
|
133 |
+
position_ids=position_ids,
|
134 |
+
head_mask=head_mask,
|
135 |
+
inputs_embeds=inputs_embeds,
|
136 |
+
output_attentions=output_attentions,
|
137 |
+
output_hidden_states=output_hidden_states,
|
138 |
+
return_dict=return_dict,
|
139 |
+
)
|
140 |
+
|
141 |
+
residue_feature = outputs.last_hidden_state # [batch_size, seq_len, hidden_dim]
|
142 |
+
|
143 |
+
# mean readout
|
144 |
+
is_special = (
|
145 |
+
(input_ids == self.cls_token_id) | (input_ids == self.eos_token_id) | (input_ids == self.pad_token_id)
|
146 |
+
)
|
147 |
+
special_mask = (~is_special).to(torch.int64).unsqueeze(-1)
|
148 |
+
protein_feature = ((residue_feature * special_mask).sum(1) / (special_mask.sum(1) + 1.0e-6)).to(residue_feature.dtype)
|
149 |
+
|
150 |
+
return EsmProteinRepresentationOutput(
|
151 |
+
protein_feature=protein_feature, residue_feature=residue_feature
|
152 |
+
)
|
153 |
+
|
154 |
+
|
155 |
+
class ProtSTPreTrainedModel(PreTrainedModel):
|
156 |
+
config_class = ProtSTConfig
|
157 |
+
|
158 |
+
|
159 |
+
class ProtSTForProteinPropertyPrediction(ProtSTPreTrainedModel):
|
160 |
+
def __init__(self, config):
|
161 |
+
super().__init__(config)
|
162 |
+
|
163 |
+
self.config = config
|
164 |
+
self.protein_model = EsmForProteinRepresentation(config.protein_config)
|
165 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * math.log(1 / 0.07))
|
166 |
+
self.classifier = ProtSTHead(config.protein_config, out_dim=config.num_labels)
|
167 |
+
|
168 |
+
self.post_init() # NOTE
|
169 |
+
|
170 |
+
def forward(
|
171 |
+
self,
|
172 |
+
input_ids: Optional[torch.LongTensor] = None,
|
173 |
+
attention_mask: Optional[torch.Tensor] = None,
|
174 |
+
position_ids: Optional[torch.LongTensor] = None,
|
175 |
+
head_mask: Optional[torch.Tensor] = None,
|
176 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
177 |
+
labels: Optional[torch.LongTensor] = None,
|
178 |
+
output_attentions: Optional[bool] = None,
|
179 |
+
output_hidden_states: Optional[bool] = None,
|
180 |
+
return_dict: Optional[bool] = None,
|
181 |
+
) -> Union[Tuple, ProtSTClassificationOutput]:
|
182 |
+
r"""
|
183 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
184 |
+
Labels for computing the protein classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
185 |
+
Returns:
|
186 |
+
Examples:
|
187 |
+
"""
|
188 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
189 |
+
|
190 |
+
outputs = self.protein_model(
|
191 |
+
input_ids,
|
192 |
+
attention_mask=attention_mask,
|
193 |
+
position_ids=position_ids,
|
194 |
+
head_mask=head_mask,
|
195 |
+
inputs_embeds=inputs_embeds,
|
196 |
+
output_attentions=output_attentions,
|
197 |
+
output_hidden_states=output_hidden_states,
|
198 |
+
return_dict=return_dict,
|
199 |
+
)
|
200 |
+
|
201 |
+
logits = self.classifier(outputs.protein_feature) # [bsz, xxx] -> [bsz, num_labels]
|
202 |
+
|
203 |
+
loss = None
|
204 |
+
if labels is not None:
|
205 |
+
loss_fct = nn.CrossEntropyLoss()
|
206 |
+
|
207 |
+
labels = labels.to(logits.device)
|
208 |
+
loss = loss_fct(logits.view(-1, logits.shape[-1]), labels.view(-1))
|
209 |
+
|
210 |
+
if not return_dict:
|
211 |
+
output = (logits,)
|
212 |
+
return ((loss,) + output) if loss is not None else output
|
213 |
+
|
214 |
+
return ProtSTClassificationOutput(loss=loss, logits=logits)
|