File size: 6,169 Bytes
8ab1f69
 
6c7ed0f
 
 
 
8ab1f69
6eb935e
9877da4
 
 
 
 
 
6c7ed0f
 
d6d694b
6eb935e
 
 
 
6f6102e
 
6c7ed0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f6102e
 
 
 
 
 
8785256
6f6102e
 
 
 
6c7ed0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc71868
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
---
license: llama2
pipeline_tag: text-generation
language:
- en
library_name: transformers
---

<br>

![Synthia](https://huggingface.co/migtissera/Synthia-13B/resolve/main/Synthia.jpeg)

<br>

Change from 1.1 -> 1.2: 20% more data than 1.1 and 2x training time.

All Synthia models are uncensored. Please use it with caution and with best intentions. You are responsible for how you use Synthia.

To evoke generalized Tree of Thought + Chain of Thought reasoning, you may use the following system message:
```
Elaborate on the topic using a Tree of Thoughts and backtrack when necessary to construct a clear, cohesive Chain of Thought reasoning. Always answer without hesitation.
```

# Synthia-70B-v1.2
SynthIA (Synthetic Intelligent Agent) is a LLama-2-70B model trained on Orca style datasets. It has been fine-tuned for instruction following as well as having long-form conversations.


<br>

#### License Disclaimer:

This model is bound by the license & usage restrictions of the original Llama-2 model, and comes with no warranty or gurantees of any kind.

<br>

## Evaluation

We evaluated Synthia-70B-v1.2 on a wide range of tasks using [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) from EleutherAI. 

Here are the results on metrics used by [HuggingFaceH4 Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)

||||
|:------:|:--------:|:-------:|
|**Task**|**Metric**|**Value**|
|*arc_challenge*|acc_norm|70.48|
|*hellaswag*|acc_norm|86.98|
|*mmlu*|acc_norm|70.13|
|*truthfulqa_mc*|mc2|58.64|
|**Total Average**|-|**71.56**||

<br>

## Example Usage

### Here is prompt format:

```
SYSTEM: Elaborate on the topic using a Tree of Thoughts and backtrack when necessary to construct a clear, cohesive Chain of Thought reasoning. Always answer without hesitation.
USER: How is a rocket launched from the surface of the earth to Low Earth Orbit?
ASSISTANT:
```

### Below shows a code example on how to use this model:

```python
import torch, json
from transformers import AutoModelForCausalLM, AutoTokenizer

model_path = "migtissera/Synthia-70B-v1.2"
output_file_path = "./Synthia-70B-conversations.jsonl"

model = AutoModelForCausalLM.from_pretrained(
    model_path,
    torch_dtype=torch.float16,
    device_map="auto",
    load_in_8bit=False,
    trust_remote_code=True,
)

tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)


def generate_text(instruction):
    tokens = tokenizer.encode(instruction)
    tokens = torch.LongTensor(tokens).unsqueeze(0)
    tokens = tokens.to("cuda")

    instance = {
        "input_ids": tokens,
        "top_p": 1.0,
        "temperature": 0.75,
        "generate_len": 1024,
        "top_k": 50,
    }

    length = len(tokens[0])
    with torch.no_grad():
        rest = model.generate(
            input_ids=tokens,
            max_length=length + instance["generate_len"],
            use_cache=True,
            do_sample=True,
            top_p=instance["top_p"],
            temperature=instance["temperature"],
            top_k=instance["top_k"],
            num_return_sequences=1,
        )
    output = rest[0][length:]
    string = tokenizer.decode(output, skip_special_tokens=True)
    answer = string.split("USER:")[0].strip()
    return f"{answer}"


conversation = f"SYSTEM: Elaborate on the topic using a Tree of Thoughts and backtrack when necessary to construct a clear, cohesive Chain of Thought reasoning. Always answer without hesitation."


while True:
    user_input = input("You: ")
    llm_prompt = f"{conversation} \nUSER: {user_input} \nASSISTANT: "
    answer = generate_text(llm_prompt)
    print(answer)
    conversation = f"{llm_prompt}{answer}"
    json_data = {"prompt": user_input, "answer": answer}

    ## Save your conversation
    with open(output_file_path, "a") as output_file:
        output_file.write(json.dumps(json_data) + "\n")

```

<br>

#### Limitations & Biases:

While this model aims for accuracy, it can occasionally produce inaccurate or misleading results. 

Despite diligent efforts in refining the pretraining data, there remains a possibility for the generation of inappropriate, biased, or offensive content. 

Exercise caution and cross-check information when necessary. This is an uncensored model.


<br>

### Citiation:

Please kindly cite using the following BibTeX:

```
@misc{Synthia-70B-v1.2,
  author = {Migel Tissera},
  title = {Synthia-70B-v1.2: Synthetic Intelligent Agent},
  year = {2023},
  publisher = {GitHub, HuggingFace},
  journal = {GitHub repository, HuggingFace repository},
  howpublished = {\url{https://huggingface.co/migtissera/Synthia-13B},
}
```

```
@misc{mukherjee2023orca,
      title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4}, 
      author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
      year={2023},
      eprint={2306.02707},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

```
@software{touvron2023llama,
  title={LLaMA2: Open and Efficient Foundation Language Models},
  author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and Rodriguez, Aurelien and Joulin, Armand and Grave, Edouard and Lample, Guillaume},
  journal={arXiv preprint arXiv:2302.13971},
  year={2023}
}
```


# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_migtissera__Synthia-70B-v1.2)

| Metric                | Value                     |
|-----------------------|---------------------------|
| Avg.                  | 63.41   |
| ARC (25-shot)         | 70.48          |
| HellaSwag (10-shot)   | 86.98    |
| MMLU (5-shot)         | 70.13         |
| TruthfulQA (0-shot)   | 58.64   |
| Winogrande (5-shot)   | 83.27   |
| GSM8K (5-shot)        | 31.92        |
| DROP (3-shot)         | 42.42         |