File size: 2,728 Bytes
df981e0 40df538 df981e0 b8a7a4f df981e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
language: en
license: mit
tags:
- vision
- video-classification
model-index:
- name: nielsr/xclip-base-patch32
results:
- task:
type: video-classification
dataset:
name: Kinetics 400
type: kinetics-400
metrics:
- type: top-1 accuracy
value: 80.4
- type: top-5 accuracy
value: 95.0
---
# X-CLIP (base-sized model)
X-CLIP model (base-sized, patch resolution of 32) trained fully-supervised on [Kinetics-400](https://www.deepmind.com/open-source/kinetics). It was introduced in the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Ni et al. and first released in [this repository](https://github.com/microsoft/VideoX/tree/master/X-CLIP).
This model was trained using 8 frames per video, at a resolution of 224x224.
Disclaimer: The team releasing X-CLIP did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
X-CLIP is a minimal extension of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip) for general video-language understanding. The model is trained in a contrastive way on (video, text) pairs.
![X-CLIP architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/xclip_architecture.png)
This allows the model to be used for tasks like zero-shot, few-shot or fully supervised video classification and video-text retrieval.
## Intended uses & limitations
You can use the raw model for determining how well text goes with a given video. See the [model hub](https://huggingface.co/models?search=microsoft/xclip) to look for
fine-tuned versions on a task that interests you.
### How to use
For code examples, we refer to the [documentation](https://huggingface.co/transformers/main/model_doc/xclip.html#).
## Training data
This model was trained on [Kinetics-400](https://www.deepmind.com/open-source/kinetics).
### Preprocessing
The exact details of preprocessing during training can be found [here](https://github.com/microsoft/VideoX/blob/40f6d177e0a057a50ac69ac1de6b5938fd268601/X-CLIP/datasets/build.py#L247).
The exact details of preprocessing during validation can be found [here](https://github.com/microsoft/VideoX/blob/40f6d177e0a057a50ac69ac1de6b5938fd268601/X-CLIP/datasets/build.py#L285).
During validation, one resizes the shorter edge of each frame, after which center cropping is performed to a fixed-size resolution (like 224x224). Next, frames are normalized across the RGB channels with the ImageNet mean and standard deviation.
## Evaluation results
This model achieves a top-1 accuracy of 80.4% and a top-5 accuracy of 95.0%.
|