Adds support for MQA/GQA and attention mask during training.
Browse files- README.md +1 -1
- configuration_mixformer_sequential.py +3 -1
- modeling_mixformer_sequential.py +254 -202
README.md
CHANGED
@@ -127,7 +127,7 @@ with torch.autocast(model.device.type, dtype=torch.float16, enabled=True):
|
|
127 |
```
|
128 |
|
129 |
**Remark.** In the generation function, our model currently does not support beam search (`num_beams` > 1).
|
130 |
-
Furthermore, in the forward pass of the model, we currently do not support
|
131 |
|
132 |
### Citation
|
133 |
|
|
|
127 |
```
|
128 |
|
129 |
**Remark.** In the generation function, our model currently does not support beam search (`num_beams` > 1).
|
130 |
+
Furthermore, in the forward pass of the model, we currently do not support outputting hidden states or attention values, or using custom input embeddings (instead of the model's).
|
131 |
|
132 |
### Citation
|
133 |
|
configuration_mixformer_sequential.py
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
# Licensed under the MIT license.
|
3 |
|
4 |
import math
|
5 |
-
from typing import
|
6 |
|
7 |
from transformers import PretrainedConfig
|
8 |
|
@@ -27,6 +27,7 @@ class MixFormerSequentialConfig(PretrainedConfig):
|
|
27 |
n_layer: Optional[int] = 20,
|
28 |
n_inner: Optional[int] = None,
|
29 |
n_head: Optional[int] = 16,
|
|
|
30 |
rotary_dim: Optional[int] = 32,
|
31 |
activation_function: Optional[str] = "gelu_new",
|
32 |
embd_pdrop: Optional[float] = 0.0,
|
@@ -43,6 +44,7 @@ class MixFormerSequentialConfig(PretrainedConfig):
|
|
43 |
self.n_layer = n_layer
|
44 |
self.n_inner = n_inner
|
45 |
self.n_head = n_head
|
|
|
46 |
self.rotary_dim = min(rotary_dim, n_embd // n_head)
|
47 |
self.activation_function = activation_function
|
48 |
self.embd_pdrop = embd_pdrop
|
|
|
2 |
# Licensed under the MIT license.
|
3 |
|
4 |
import math
|
5 |
+
from typing import Optional
|
6 |
|
7 |
from transformers import PretrainedConfig
|
8 |
|
|
|
27 |
n_layer: Optional[int] = 20,
|
28 |
n_inner: Optional[int] = None,
|
29 |
n_head: Optional[int] = 16,
|
30 |
+
n_head_kv: Optional[int] = None,
|
31 |
rotary_dim: Optional[int] = 32,
|
32 |
activation_function: Optional[str] = "gelu_new",
|
33 |
embd_pdrop: Optional[float] = 0.0,
|
|
|
44 |
self.n_layer = n_layer
|
45 |
self.n_inner = n_inner
|
46 |
self.n_head = n_head
|
47 |
+
self.n_head_kv = n_head_kv
|
48 |
self.rotary_dim = min(rotary_dim, n_embd // n_head)
|
49 |
self.activation_function = activation_function
|
50 |
self.embd_pdrop = embd_pdrop
|
modeling_mixformer_sequential.py
CHANGED
@@ -34,20 +34,20 @@
|
|
34 |
from __future__ import annotations
|
35 |
|
36 |
import math
|
37 |
-
import copy
|
38 |
from typing import Any, Dict, Optional, Tuple, Union
|
39 |
from dataclasses import dataclass, field
|
40 |
|
41 |
import torch
|
42 |
import torch.nn as nn
|
43 |
|
44 |
-
from einops import rearrange
|
45 |
from transformers.activations import ACT2FN
|
46 |
from transformers import PretrainedConfig, PreTrainedModel
|
47 |
from transformers.modeling_outputs import CausalLMOutputWithPast
|
48 |
|
49 |
from .configuration_mixformer_sequential import MixFormerSequentialConfig
|
50 |
|
|
|
51 |
@dataclass
|
52 |
class InferenceParams:
|
53 |
"""Inference parameters passed to model to efficiently calculate
|
@@ -57,21 +57,20 @@ class InferenceParams:
|
|
57 |
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/utils/generation.py.
|
58 |
|
59 |
Args:
|
60 |
-
|
61 |
max_batch_size: Maximum batch size.
|
62 |
-
|
63 |
batch_size_offset: Batch size offset.
|
64 |
key_value_memory_dict: Key value memory dictionary.
|
65 |
-
fused_ft_kernel: Whether to use fused kernel for fast inference.
|
66 |
lengths_per_sample: Lengths per sample.
|
67 |
|
68 |
"""
|
69 |
|
70 |
-
|
71 |
|
72 |
max_batch_size: int = field(metadata={"help": "Maximum batch size."})
|
73 |
|
74 |
-
|
75 |
|
76 |
batch_size_offset: int = field(default=0, metadata={"help": "Batch size offset."})
|
77 |
|
@@ -79,8 +78,6 @@ class InferenceParams:
|
|
79 |
default_factory=dict, metadata={"help": "Key value memory dictionary."}
|
80 |
)
|
81 |
|
82 |
-
fused_ft_kernel: bool = field(default=False, metadata={"help": "Whether to use fused kernel for fast inference."})
|
83 |
-
|
84 |
lengths_per_sample: torch.Tensor = field(default=None, metadata={"help": "Lengths per sample."})
|
85 |
|
86 |
|
@@ -103,12 +100,112 @@ class Embedding(nn.Module):
|
|
103 |
return hidden_states
|
104 |
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
class RotaryEmbedding(nn.Module):
|
107 |
-
"""Rotary
|
108 |
|
109 |
Reference:
|
110 |
-
|
111 |
-
|
|
|
112 |
"""
|
113 |
|
114 |
def __init__(
|
@@ -131,14 +228,14 @@ class RotaryEmbedding(nn.Module):
|
|
131 |
self.device = device
|
132 |
|
133 |
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim))
|
134 |
-
self.register_buffer("inv_freq", inv_freq)
|
135 |
|
136 |
scale = (
|
137 |
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
|
138 |
if scale_base is not None
|
139 |
else None
|
140 |
)
|
141 |
-
self.register_buffer("scale", scale)
|
142 |
|
143 |
self._seq_len_cached = 0
|
144 |
self._cos_cached = None
|
@@ -146,28 +243,26 @@ class RotaryEmbedding(nn.Module):
|
|
146 |
self._cos_k_cached = None
|
147 |
self._sin_k_cached = None
|
148 |
|
149 |
-
def _update_cos_sin_cache(
|
150 |
-
|
151 |
-
|
152 |
-
seqlen = x.shape[1] + seqlen_offset
|
153 |
-
|
154 |
# Re-generate the inverse frequency buffer if it's not fp32
|
155 |
# (for instance if model.half() was called)
|
156 |
if self.inv_freq.dtype != "torch.float32":
|
157 |
self.inv_freq = 1.0 / (
|
158 |
-
self.base ** (torch.arange(0, self.dim, 2, device=
|
159 |
)
|
160 |
|
161 |
-
if seqlen > self._seq_len_cached or self._cos_cached.device !=
|
162 |
self._seq_len_cached = seqlen
|
163 |
-
t = torch.arange(seqlen, device=
|
164 |
|
165 |
# Don't do einsum, it converts fp32 to fp16
|
166 |
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
167 |
freqs = torch.outer(t, self.inv_freq.to(device=t.device, dtype=torch.float32))
|
168 |
if self.scale is None:
|
169 |
-
self._cos_cached = torch.cos(freqs).to(
|
170 |
-
self._sin_cached = torch.sin(freqs).to(
|
171 |
else:
|
172 |
power = (
|
173 |
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2
|
@@ -175,62 +270,32 @@ class RotaryEmbedding(nn.Module):
|
|
175 |
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
|
176 |
|
177 |
# We want the multiplication by scale to happen in fp32
|
178 |
-
self._cos_cached = (torch.cos(freqs) * scale).to(
|
179 |
-
self._sin_cached = (torch.sin(freqs) * scale).to(
|
180 |
-
self._cos_k_cached = (torch.cos(freqs) / scale).to(
|
181 |
-
self._sin_k_cached = (torch.sin(freqs) / scale).to(
|
182 |
|
183 |
-
def
|
184 |
self,
|
185 |
-
qkv: torch.
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
q_rot = qkv[:, :, 0, :, :rotary_dim]
|
204 |
-
q_pass = qkv[:, :, 0, :, rotary_dim:]
|
205 |
-
|
206 |
-
k_rot = qkv[:, :, 1, :, :rotary_dim]
|
207 |
-
k_pass = qkv[:, :, 1, :, rotary_dim:]
|
208 |
-
|
209 |
-
# Splits the queries and keys in half
|
210 |
-
q1, q2 = q_rot.chunk(2, dim=-1)
|
211 |
-
k1, k2 = k_rot.chunk(2, dim=-1)
|
212 |
-
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
|
213 |
-
|
214 |
-
# Casts to fp32 are necessary to prevent fp16 overflow issues
|
215 |
-
q1, q2, k1, k2, c, s = [t.to(dtype=torch.float32) for t in [q1, q2, k1, k2, c, s]]
|
216 |
-
|
217 |
-
# Computes the new keys and queries, recasting to original dtype
|
218 |
-
q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype)
|
219 |
-
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype)
|
220 |
-
|
221 |
-
return torch.cat(
|
222 |
-
[
|
223 |
-
torch.cat([q_rot, q_pass], axis=-1).unsqueeze(2),
|
224 |
-
torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
|
225 |
-
qkv[:, :, 2:3, :, :],
|
226 |
-
],
|
227 |
-
axis=2,
|
228 |
-
)
|
229 |
|
230 |
-
|
231 |
-
# `qkv` is of shape (batch, seqlen, 3, nheads, headdim)
|
232 |
-
self._update_cos_sin_cache(qkv, seqlen_offset)
|
233 |
-
return self._apply_rotary_emb_qkv(qkv, self._sin_cached[seqlen_offset:], self._cos_cached[seqlen_offset:])
|
234 |
|
235 |
|
236 |
class MLP(nn.Module):
|
@@ -290,21 +355,22 @@ class SelfAttention(nn.Module):
|
|
290 |
attention_mask: Optional[torch.BoolTensor] = None,
|
291 |
**kwargs,
|
292 |
) -> torch.FloatTensor:
|
293 |
-
|
294 |
-
batch_size, seq_len = qkv.shape[0], qkv.shape[1]
|
295 |
q, k, v = qkv.unbind(dim=2)
|
296 |
|
|
|
297 |
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
|
|
298 |
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
|
299 |
|
300 |
if attention_mask is not None:
|
301 |
-
padding_mask = torch.full((batch_size,
|
302 |
padding_mask.masked_fill_(attention_mask, 0.0)
|
303 |
|
304 |
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
|
305 |
|
306 |
if causal:
|
307 |
-
causal_mask = torch.triu(torch.full((
|
308 |
scores = scores + causal_mask.to(dtype=scores.dtype)
|
309 |
|
310 |
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
|
@@ -343,25 +409,31 @@ class CrossAttention(nn.Module):
|
|
343 |
attention_mask: Optional[torch.BoolTensor] = None,
|
344 |
**kwargs,
|
345 |
) -> torch.FloatTensor:
|
346 |
-
|
347 |
-
|
348 |
-
assert kv.shape[0] == batch_size and kv.shape[
|
349 |
|
350 |
-
|
|
|
351 |
k, v = kv.unbind(dim=2)
|
352 |
|
|
|
353 |
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
|
|
354 |
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
|
355 |
|
356 |
if attention_mask is not None:
|
357 |
-
padding_mask = torch.full((batch_size,
|
358 |
padding_mask.masked_fill_(attention_mask, 0.0)
|
359 |
|
360 |
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
|
361 |
|
362 |
if causal:
|
363 |
-
|
364 |
-
|
|
|
|
|
|
|
365 |
|
366 |
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
|
367 |
attention = self.drop(attention)
|
@@ -371,21 +443,12 @@ class CrossAttention(nn.Module):
|
|
371 |
return output
|
372 |
|
373 |
|
374 |
-
def
|
375 |
-
config: PretrainedConfig,
|
|
|
|
|
|
|
376 |
) -> Tuple[int, int]:
|
377 |
-
"""Validate and return the number of heads and head dimension for multi-head attention.
|
378 |
-
|
379 |
-
Args:
|
380 |
-
config: Model configuration.
|
381 |
-
n_head: Number of heads.
|
382 |
-
head_dim: Head dimension.
|
383 |
-
|
384 |
-
Returns:
|
385 |
-
Number of heads and head dimension.
|
386 |
-
|
387 |
-
"""
|
388 |
-
|
389 |
assert all(
|
390 |
hasattr(config, attr) for attr in ["n_embd", "n_head"]
|
391 |
), "`config` must have `n_embd` and `n_head` attributes."
|
@@ -401,31 +464,20 @@ def find_mha_dims(
|
|
401 |
elif n_head is None or head_dim is None:
|
402 |
raise ValueError("`n_head` and `head_dim` must be both specified or `None`.")
|
403 |
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
def update_kv_cache(kv: torch.FloatTensor, inference_params: InferenceParams, layer_idx: int) -> torch.FloatTensor:
|
408 |
-
"""Update the key-value cache for inference.
|
409 |
-
|
410 |
-
Reference:
|
411 |
-
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
|
412 |
-
|
413 |
-
Args:
|
414 |
-
kv: Key-value tensor.
|
415 |
-
inference_params: Inference parameters.
|
416 |
-
layer_idx: Layer index.
|
417 |
|
418 |
-
|
419 |
-
Updated key-value tensor.
|
420 |
|
421 |
-
"""
|
422 |
|
|
|
423 |
num_heads, head_dim = kv.shape[-2:]
|
424 |
|
425 |
if layer_idx not in inference_params.key_value_memory_dict:
|
426 |
kv_cache = torch.empty(
|
427 |
inference_params.max_batch_size,
|
428 |
-
inference_params.
|
429 |
2,
|
430 |
num_heads,
|
431 |
head_dim,
|
@@ -434,43 +486,19 @@ def update_kv_cache(kv: torch.FloatTensor, inference_params: InferenceParams, la
|
|
434 |
)
|
435 |
inference_params.key_value_memory_dict[layer_idx] = kv_cache
|
436 |
else:
|
437 |
-
|
438 |
-
kv_cache = inference_params.key_value_memory_dict[layer_idx]
|
439 |
-
else:
|
440 |
-
k_cache, v_cache = inference_params.key_value_memory_dict[layer_idx]
|
441 |
-
kv_cache = None
|
442 |
|
443 |
batch_start = inference_params.batch_size_offset
|
444 |
batch_end = batch_start + kv.shape[0]
|
445 |
-
assert batch_end <=
|
446 |
|
447 |
-
sequence_start = inference_params.
|
448 |
sequence_end = sequence_start + kv.shape[1]
|
449 |
-
assert sequence_end <=
|
450 |
-
|
451 |
-
if not inference_params.fused_ft_kernel:
|
452 |
-
assert kv_cache is not None
|
453 |
-
|
454 |
-
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
|
455 |
-
kv = kv_cache[batch_start:batch_end, :sequence_end, ...]
|
456 |
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
assert kv.dtype in [torch.float16, torch.bfloat16, torch.float32]
|
461 |
-
|
462 |
-
packsize = 4 if kv.dtype == torch.float32 else 8
|
463 |
-
|
464 |
-
if kv_cache is not None:
|
465 |
-
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
|
466 |
-
k_cache = rearrange(kv_cache[:, :, 0], "b s h (d packsize) -> b h d s packsize", packsize=packsize).contiguous()
|
467 |
-
v_cache = rearrange(kv_cache[:, :, 1], "b s h d -> b h s d").contiguous()
|
468 |
-
inference_params.key_value_memory_dict[layer_idx] = (k_cache, v_cache)
|
469 |
-
else:
|
470 |
-
k_cache[batch_start:batch_end, :, :, :sequence_end, :] = rearrange(
|
471 |
-
kv[:, :, 0], "b s h (d packsize) -> b h d s packsize", packsize=packsize
|
472 |
-
)
|
473 |
-
v_cache[batch_start:batch_end, :, :sequence_end, :] = rearrange(kv[:, :, 1], "b s h d -> b h s d")
|
474 |
|
475 |
return kv
|
476 |
|
@@ -486,6 +514,7 @@ class MHA(nn.Module):
|
|
486 |
rotary_dim: Optional[int] = None,
|
487 |
rotary_emb_scale_base: Optional[float] = None,
|
488 |
n_head: Optional[int] = None,
|
|
|
489 |
head_dim: Optional[int] = None,
|
490 |
bias: bool = True,
|
491 |
causal: bool = True,
|
@@ -506,12 +535,12 @@ class MHA(nn.Module):
|
|
506 |
self.rotary_emb = RotaryEmbedding(self.rotary_emb_dim, **rotary_kwargs)
|
507 |
|
508 |
# MLP
|
509 |
-
self.n_head, self.head_dim =
|
510 |
-
op_size = self.n_head * self.
|
511 |
hidden_size = config.n_embd
|
512 |
|
513 |
-
self.Wqkv = nn.Linear(hidden_size,
|
514 |
-
self.out_proj = nn.Linear(
|
515 |
|
516 |
# Attention
|
517 |
self.inner_attn = SelfAttention(causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout)
|
@@ -521,40 +550,75 @@ class MHA(nn.Module):
|
|
521 |
self.return_residual = return_residual
|
522 |
self.checkpointing = checkpointing
|
523 |
|
524 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
525 |
self,
|
526 |
x: torch.FloatTensor,
|
527 |
-
past_key_values: Optional[InferenceParams]
|
528 |
-
attention_mask: Optional[torch.BoolTensor]
|
529 |
-
|
530 |
-
max_seqlen: Optional[int] = None,
|
531 |
-
**kwargs,
|
532 |
-
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
533 |
qkv = self.Wqkv(x)
|
534 |
-
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
|
535 |
|
536 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
537 |
if self.rotary_emb_dim > 0:
|
538 |
-
|
539 |
|
540 |
if past_key_values is not None:
|
541 |
-
kv =
|
542 |
|
543 |
-
if
|
544 |
-
|
545 |
-
|
|
|
546 |
|
547 |
-
|
548 |
|
549 |
-
|
550 |
-
|
551 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
552 |
else:
|
553 |
-
|
|
|
|
|
|
|
554 |
else:
|
555 |
-
|
556 |
-
|
557 |
-
attn_output = self.
|
558 |
|
559 |
output = rearrange(attn_output, "... h d -> ... (h d)")
|
560 |
output = self.out_proj(output)
|
@@ -672,38 +736,29 @@ class MixFormerSequentialPreTrainedModel(PreTrainedModel):
|
|
672 |
if module.padding_idx is not None:
|
673 |
module.weight.data[module.padding_idx].zero_()
|
674 |
elif isinstance(module, nn.LayerNorm):
|
675 |
-
module.bias
|
|
|
676 |
module.weight.data.fill_(1.0)
|
677 |
|
678 |
def prepare_inputs_for_generation(
|
679 |
self,
|
680 |
input_ids: torch.LongTensor,
|
681 |
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
|
682 |
-
attention_mask: Optional[torch.BoolTensor] = None,
|
683 |
**kwargs,
|
684 |
) -> Dict[str, Any]:
|
685 |
-
if attention_mask is not None and torch.any(~attention_mask.bool()):
|
686 |
-
total_seq_len = torch.sum(attention_mask, dim=1)
|
687 |
-
max_seq_len = torch.max(total_seq_len)
|
688 |
-
|
689 |
-
total_seq_len = torch.cat((torch.tensor([0], device=attention_mask.device), total_seq_len)).unsqueeze(1)
|
690 |
-
cumulative_seq_len = torch.cumsum(total_seq_len, dim=0).squeeze(1).to(torch.int32)
|
691 |
-
attention_mask = (attention_mask.bool(), cumulative_seq_len, max_seq_len.item())
|
692 |
-
else:
|
693 |
-
attention_mask = None
|
694 |
-
|
695 |
if past_key_values is None or not (isinstance(past_key_values, InferenceParams)):
|
696 |
past_key_values = InferenceParams(
|
|
|
697 |
max_batch_size=input_ids.shape[0],
|
698 |
-
|
699 |
-
sequence_len_offset=0,
|
700 |
batch_size_offset=0,
|
701 |
-
fused_ft_kernel=False,
|
702 |
key_value_memory_dict={},
|
|
|
703 |
)
|
704 |
else:
|
705 |
# Assume that `past_key_values` has cached all tokens up to the last token in `input_ids`
|
706 |
-
past_key_values.
|
707 |
input_ids = input_ids[:, -1].unsqueeze(-1)
|
708 |
|
709 |
return {
|
@@ -712,9 +767,9 @@ class MixFormerSequentialPreTrainedModel(PreTrainedModel):
|
|
712 |
"attention_mask": attention_mask,
|
713 |
}
|
714 |
|
715 |
-
def _set_gradient_checkpointing(self, module, value=False):
|
716 |
-
|
717 |
-
|
718 |
|
719 |
|
720 |
class MixFormerSequentialForCausalLM(MixFormerSequentialPreTrainedModel):
|
@@ -756,13 +811,10 @@ class MixFormerSequentialForCausalLM(MixFormerSequentialPreTrainedModel):
|
|
756 |
labels: Optional[torch.LongTensor] = None,
|
757 |
**kwargs,
|
758 |
) -> CausalLMOutputWithPast:
|
759 |
-
|
760 |
-
|
761 |
-
|
762 |
-
|
763 |
-
for module in self.layers[1:-1]:
|
764 |
-
hidden_layer = module(hidden_layer, past_key_values=past_key_values, attention_mask=attention_mask)
|
765 |
-
lm_logits = self.layers[-1](hidden_layer)
|
766 |
|
767 |
loss = None
|
768 |
if labels is not None:
|
|
|
34 |
from __future__ import annotations
|
35 |
|
36 |
import math
|
|
|
37 |
from typing import Any, Dict, Optional, Tuple, Union
|
38 |
from dataclasses import dataclass, field
|
39 |
|
40 |
import torch
|
41 |
import torch.nn as nn
|
42 |
|
43 |
+
from einops import rearrange, repeat
|
44 |
from transformers.activations import ACT2FN
|
45 |
from transformers import PretrainedConfig, PreTrainedModel
|
46 |
from transformers.modeling_outputs import CausalLMOutputWithPast
|
47 |
|
48 |
from .configuration_mixformer_sequential import MixFormerSequentialConfig
|
49 |
|
50 |
+
|
51 |
@dataclass
|
52 |
class InferenceParams:
|
53 |
"""Inference parameters passed to model to efficiently calculate
|
|
|
57 |
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/utils/generation.py.
|
58 |
|
59 |
Args:
|
60 |
+
max_seqlen: Maximum sequence length.
|
61 |
max_batch_size: Maximum batch size.
|
62 |
+
seqlen_offset: Sequence length offset.
|
63 |
batch_size_offset: Batch size offset.
|
64 |
key_value_memory_dict: Key value memory dictionary.
|
|
|
65 |
lengths_per_sample: Lengths per sample.
|
66 |
|
67 |
"""
|
68 |
|
69 |
+
max_seqlen: int = field(metadata={"help": "Maximum sequence length."})
|
70 |
|
71 |
max_batch_size: int = field(metadata={"help": "Maximum batch size."})
|
72 |
|
73 |
+
seqlen_offset: int = field(default=0, metadata={"help": "Sequence length offset."})
|
74 |
|
75 |
batch_size_offset: int = field(default=0, metadata={"help": "Batch size offset."})
|
76 |
|
|
|
78 |
default_factory=dict, metadata={"help": "Key value memory dictionary."}
|
79 |
)
|
80 |
|
|
|
|
|
81 |
lengths_per_sample: torch.Tensor = field(default=None, metadata={"help": "Lengths per sample."})
|
82 |
|
83 |
|
|
|
100 |
return hidden_states
|
101 |
|
102 |
|
103 |
+
def _apply_rotary_emb(
|
104 |
+
x: torch.FloatTensor,
|
105 |
+
cos: torch.FloatTensor,
|
106 |
+
sin: torch.FloatTensor,
|
107 |
+
) -> torch.FloatTensor:
|
108 |
+
_, seqlen, _, head_dim = x.shape
|
109 |
+
rotary_seqlen, rotary_dim = cos.shape
|
110 |
+
rotary_dim *= 2
|
111 |
+
|
112 |
+
assert rotary_dim <= head_dim
|
113 |
+
assert seqlen <= rotary_seqlen
|
114 |
+
assert cos.shape == sin.shape == (rotary_seqlen, rotary_dim // 2)
|
115 |
+
|
116 |
+
x_rot = x[:, :, :, :rotary_dim]
|
117 |
+
x_pass = x[:, :, :, rotary_dim:]
|
118 |
+
|
119 |
+
x1, x2 = x_rot.chunk(2, dim=-1)
|
120 |
+
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
|
121 |
+
x1, x2, c, s = [t.to(dtype=torch.float32) for t in [x1, x2, c, s]]
|
122 |
+
|
123 |
+
x_rot = torch.cat([x1 * c - x2 * s, x1 * s + x2 * c], axis=-1).to(x.dtype)
|
124 |
+
|
125 |
+
return torch.cat([x_rot, x_pass], axis=-1)
|
126 |
+
|
127 |
+
|
128 |
+
def _apply_rotary_emb_kv(
|
129 |
+
kv: torch.FloatTensor,
|
130 |
+
cos: torch.FloatTensor,
|
131 |
+
sin: torch.FloatTensor,
|
132 |
+
cos_k: Optional[torch.FloatTensor] = None,
|
133 |
+
sin_k: Optional[torch.FloatTensor] = None,
|
134 |
+
) -> torch.FloatTensor:
|
135 |
+
_, seqlen, two, _, head_dim = kv.shape
|
136 |
+
assert two == 2
|
137 |
+
|
138 |
+
rotary_seqlen, rotary_dim = cos.shape
|
139 |
+
rotary_dim *= 2
|
140 |
+
assert rotary_dim <= head_dim
|
141 |
+
assert seqlen <= rotary_seqlen
|
142 |
+
assert cos.shape == sin.shape == (rotary_seqlen, rotary_dim // 2)
|
143 |
+
|
144 |
+
k_rot = kv[:, :, 0, :, :rotary_dim]
|
145 |
+
k_pass = kv[:, :, 0, :, rotary_dim:]
|
146 |
+
|
147 |
+
k1, k2 = k_rot.chunk(2, dim=-1)
|
148 |
+
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
|
149 |
+
k1, k2, c, s = [t.to(dtype=torch.float32) for t in [k1, k2, c, s]]
|
150 |
+
|
151 |
+
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(kv.dtype)
|
152 |
+
|
153 |
+
return torch.cat(
|
154 |
+
[
|
155 |
+
torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
|
156 |
+
kv[:, :, 1:2, :, :],
|
157 |
+
],
|
158 |
+
axis=2,
|
159 |
+
)
|
160 |
+
|
161 |
+
|
162 |
+
def _apply_rotary_emb_qkv(
|
163 |
+
qkv: torch.FloatTensor,
|
164 |
+
cos: torch.FloatTensor,
|
165 |
+
sin: torch.FloatTensor,
|
166 |
+
cos_k: Optional[torch.FloatTensor] = None,
|
167 |
+
sin_k: Optional[torch.FloatTensor] = None,
|
168 |
+
) -> torch.FloatTensor:
|
169 |
+
_, seqlen, three, _, head_dim = qkv.shape
|
170 |
+
assert three == 3
|
171 |
+
|
172 |
+
rotary_seqlen, rotary_dim = cos.shape
|
173 |
+
rotary_dim *= 2
|
174 |
+
assert rotary_dim <= head_dim
|
175 |
+
assert seqlen <= rotary_seqlen
|
176 |
+
assert cos.shape == sin.shape == (rotary_seqlen, rotary_dim // 2)
|
177 |
+
|
178 |
+
q_rot = qkv[:, :, 0, :, :rotary_dim]
|
179 |
+
q_pass = qkv[:, :, 0, :, rotary_dim:]
|
180 |
+
|
181 |
+
k_rot = qkv[:, :, 1, :, :rotary_dim]
|
182 |
+
k_pass = qkv[:, :, 1, :, rotary_dim:]
|
183 |
+
|
184 |
+
q1, q2 = q_rot.chunk(2, dim=-1)
|
185 |
+
k1, k2 = k_rot.chunk(2, dim=-1)
|
186 |
+
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
|
187 |
+
q1, q2, k1, k2, c, s = [t.to(dtype=torch.float32) for t in [q1, q2, k1, k2, c, s]]
|
188 |
+
|
189 |
+
q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype)
|
190 |
+
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype)
|
191 |
+
|
192 |
+
return torch.cat(
|
193 |
+
[
|
194 |
+
torch.cat([q_rot, q_pass], axis=-1).unsqueeze(2),
|
195 |
+
torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
|
196 |
+
qkv[:, :, 2:3, :, :],
|
197 |
+
],
|
198 |
+
axis=2,
|
199 |
+
)
|
200 |
+
|
201 |
+
|
202 |
class RotaryEmbedding(nn.Module):
|
203 |
+
"""Rotary positional embedding (RoPE).
|
204 |
|
205 |
Reference:
|
206 |
+
RoFormer: Enhanced Transformer with Rotary Position Embedding.
|
207 |
+
https://arxiv.org/pdf/2104.09864.pdf.
|
208 |
+
|
209 |
"""
|
210 |
|
211 |
def __init__(
|
|
|
228 |
self.device = device
|
229 |
|
230 |
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim))
|
231 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
232 |
|
233 |
scale = (
|
234 |
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
|
235 |
if scale_base is not None
|
236 |
else None
|
237 |
)
|
238 |
+
self.register_buffer("scale", scale, persistent=False)
|
239 |
|
240 |
self._seq_len_cached = 0
|
241 |
self._cos_cached = None
|
|
|
243 |
self._cos_k_cached = None
|
244 |
self._sin_k_cached = None
|
245 |
|
246 |
+
def _update_cos_sin_cache(
|
247 |
+
self, seqlen: int, device: Optional[str] = None, dtype: Optional[torch.dtype] = None
|
248 |
+
) -> None:
|
|
|
|
|
249 |
# Re-generate the inverse frequency buffer if it's not fp32
|
250 |
# (for instance if model.half() was called)
|
251 |
if self.inv_freq.dtype != "torch.float32":
|
252 |
self.inv_freq = 1.0 / (
|
253 |
+
self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim)
|
254 |
)
|
255 |
|
256 |
+
if seqlen > self._seq_len_cached or self._cos_cached.device != device or self._cos_cached.dtype != dtype:
|
257 |
self._seq_len_cached = seqlen
|
258 |
+
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
259 |
|
260 |
# Don't do einsum, it converts fp32 to fp16
|
261 |
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
262 |
freqs = torch.outer(t, self.inv_freq.to(device=t.device, dtype=torch.float32))
|
263 |
if self.scale is None:
|
264 |
+
self._cos_cached = torch.cos(freqs).to(dtype)
|
265 |
+
self._sin_cached = torch.sin(freqs).to(dtype)
|
266 |
else:
|
267 |
power = (
|
268 |
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2
|
|
|
270 |
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
|
271 |
|
272 |
# We want the multiplication by scale to happen in fp32
|
273 |
+
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
274 |
+
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
275 |
+
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
276 |
+
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
277 |
|
278 |
+
def forward(
|
279 |
self,
|
280 |
+
qkv: torch.Tensor,
|
281 |
+
kv: Optional[torch.Tensor] = None,
|
282 |
+
seqlen_offset: int = 0,
|
283 |
+
max_seqlen: Optional[int] = None,
|
284 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
285 |
+
seqlen = qkv.shape[1]
|
286 |
+
|
287 |
+
if max_seqlen is not None:
|
288 |
+
self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype)
|
289 |
+
else:
|
290 |
+
self._update_cos_sin_cache(seqlen + seqlen_offset, device=qkv.device, dtype=qkv.dtype)
|
291 |
+
|
292 |
+
if kv is None:
|
293 |
+
return _apply_rotary_emb_qkv(qkv, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:])
|
294 |
+
else:
|
295 |
+
q = _apply_rotary_emb(qkv, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:])
|
296 |
+
kv = _apply_rotary_emb_kv(kv, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
|
298 |
+
return q, kv
|
|
|
|
|
|
|
299 |
|
300 |
|
301 |
class MLP(nn.Module):
|
|
|
355 |
attention_mask: Optional[torch.BoolTensor] = None,
|
356 |
**kwargs,
|
357 |
) -> torch.FloatTensor:
|
358 |
+
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
|
|
|
359 |
q, k, v = qkv.unbind(dim=2)
|
360 |
|
361 |
+
causal = self.causal if causal is None else causal
|
362 |
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
363 |
+
|
364 |
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
|
365 |
|
366 |
if attention_mask is not None:
|
367 |
+
padding_mask = torch.full((batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device)
|
368 |
padding_mask.masked_fill_(attention_mask, 0.0)
|
369 |
|
370 |
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
|
371 |
|
372 |
if causal:
|
373 |
+
causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
|
374 |
scores = scores + causal_mask.to(dtype=scores.dtype)
|
375 |
|
376 |
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
|
|
|
409 |
attention_mask: Optional[torch.BoolTensor] = None,
|
410 |
**kwargs,
|
411 |
) -> torch.FloatTensor:
|
412 |
+
batch_size, seqlen_q = q.shape[0], q.shape[1]
|
413 |
+
seqlen_k = kv.shape[1]
|
414 |
+
assert kv.shape[0] == batch_size and kv.shape[4] == q.shape[3]
|
415 |
|
416 |
+
if kv.shape[3] != q.shape[2]:
|
417 |
+
kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3])
|
418 |
k, v = kv.unbind(dim=2)
|
419 |
|
420 |
+
causal = self.causal if causal is None else causal
|
421 |
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
422 |
+
|
423 |
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
|
424 |
|
425 |
if attention_mask is not None:
|
426 |
+
padding_mask = torch.full((batch_size, seqlen_k), -10000.0, dtype=scores.dtype, device=scores.device)
|
427 |
padding_mask.masked_fill_(attention_mask, 0.0)
|
428 |
|
429 |
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
|
430 |
|
431 |
if causal:
|
432 |
+
rows = rearrange(torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1")
|
433 |
+
cols = torch.arange(seqlen_k, device=k.device, dtype=torch.long)
|
434 |
+
causal_mask = cols > rows + seqlen_k - seqlen_q
|
435 |
+
|
436 |
+
scores = scores.masked_fill(causal_mask, -10000.0)
|
437 |
|
438 |
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
|
439 |
attention = self.drop(attention)
|
|
|
443 |
return output
|
444 |
|
445 |
|
446 |
+
def _find_mha_dims(
|
447 |
+
config: PretrainedConfig,
|
448 |
+
n_head: Optional[int] = None,
|
449 |
+
n_head_kv: Optional[int] = None,
|
450 |
+
head_dim: Optional[int] = None,
|
451 |
) -> Tuple[int, int]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
452 |
assert all(
|
453 |
hasattr(config, attr) for attr in ["n_embd", "n_head"]
|
454 |
), "`config` must have `n_embd` and `n_head` attributes."
|
|
|
464 |
elif n_head is None or head_dim is None:
|
465 |
raise ValueError("`n_head` and `head_dim` must be both specified or `None`.")
|
466 |
|
467 |
+
if n_head_kv is None:
|
468 |
+
n_head_kv = getattr(config, "n_head_kv", None) or n_head
|
469 |
+
assert n_head % n_head_kv == 0, "`n_head` must be divisible by `n_head_kv`."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
470 |
|
471 |
+
return n_head, n_head_kv, head_dim
|
|
|
472 |
|
|
|
473 |
|
474 |
+
def _update_kv_cache(kv: torch.FloatTensor, inference_params: InferenceParams, layer_idx: int) -> torch.FloatTensor:
|
475 |
num_heads, head_dim = kv.shape[-2:]
|
476 |
|
477 |
if layer_idx not in inference_params.key_value_memory_dict:
|
478 |
kv_cache = torch.empty(
|
479 |
inference_params.max_batch_size,
|
480 |
+
inference_params.max_seqlen,
|
481 |
2,
|
482 |
num_heads,
|
483 |
head_dim,
|
|
|
486 |
)
|
487 |
inference_params.key_value_memory_dict[layer_idx] = kv_cache
|
488 |
else:
|
489 |
+
kv_cache = inference_params.key_value_memory_dict[layer_idx]
|
|
|
|
|
|
|
|
|
490 |
|
491 |
batch_start = inference_params.batch_size_offset
|
492 |
batch_end = batch_start + kv.shape[0]
|
493 |
+
assert batch_end <= kv_cache.shape[0]
|
494 |
|
495 |
+
sequence_start = inference_params.seqlen_offset
|
496 |
sequence_end = sequence_start + kv.shape[1]
|
497 |
+
assert sequence_end <= kv_cache.shape[1]
|
|
|
|
|
|
|
|
|
|
|
|
|
498 |
|
499 |
+
assert kv_cache is not None
|
500 |
+
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
|
501 |
+
kv = kv_cache[batch_start:batch_end, :sequence_end, ...]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
502 |
|
503 |
return kv
|
504 |
|
|
|
514 |
rotary_dim: Optional[int] = None,
|
515 |
rotary_emb_scale_base: Optional[float] = None,
|
516 |
n_head: Optional[int] = None,
|
517 |
+
n_head_kv: Optional[int] = None,
|
518 |
head_dim: Optional[int] = None,
|
519 |
bias: bool = True,
|
520 |
causal: bool = True,
|
|
|
535 |
self.rotary_emb = RotaryEmbedding(self.rotary_emb_dim, **rotary_kwargs)
|
536 |
|
537 |
# MLP
|
538 |
+
self.n_head, self.n_head_kv, self.head_dim = _find_mha_dims(config, n_head=n_head, n_head_kv=n_head_kv, head_dim=head_dim)
|
539 |
+
op_size = self.head_dim * (self.n_head + 2 * self.n_head_kv)
|
540 |
hidden_size = config.n_embd
|
541 |
|
542 |
+
self.Wqkv = nn.Linear(hidden_size, op_size, bias=bias, device=device, dtype=dtype)
|
543 |
+
self.out_proj = nn.Linear(hidden_size, hidden_size, bias=bias, device=device, dtype=dtype)
|
544 |
|
545 |
# Attention
|
546 |
self.inner_attn = SelfAttention(causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout)
|
|
|
550 |
self.return_residual = return_residual
|
551 |
self.checkpointing = checkpointing
|
552 |
|
553 |
+
def _forward_self_attn(
|
554 |
+
self, x: torch.FloatTensor, attention_mask: Optional[torch.BoolTensor]
|
555 |
+
) -> torch.FloatTensor:
|
556 |
+
qkv = self.Wqkv(x)
|
557 |
+
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
|
558 |
+
|
559 |
+
if self.rotary_emb_dim > 0:
|
560 |
+
qkv = self.rotary_emb(qkv)
|
561 |
+
|
562 |
+
if self.checkpointing:
|
563 |
+
return torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, attention_mask=attention_mask)
|
564 |
+
|
565 |
+
return self.inner_attn(qkv, attention_mask=attention_mask)
|
566 |
+
|
567 |
+
def _forward_cross_attn(
|
568 |
self,
|
569 |
x: torch.FloatTensor,
|
570 |
+
past_key_values: Optional[InferenceParams],
|
571 |
+
attention_mask: Optional[torch.BoolTensor],
|
572 |
+
) -> torch.FloatTensor:
|
|
|
|
|
|
|
573 |
qkv = self.Wqkv(x)
|
|
|
574 |
|
575 |
+
q = qkv[..., : self.n_head * self.head_dim]
|
576 |
+
q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
|
577 |
+
|
578 |
+
kv = qkv[..., self.n_head * self.head_dim :]
|
579 |
+
kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
|
580 |
+
|
581 |
+
seqlen_offset = past_key_values.seqlen_offset if past_key_values is not None else 0
|
582 |
+
causal = None if seqlen_offset == 0 else False
|
583 |
if self.rotary_emb_dim > 0:
|
584 |
+
q, kv = self.rotary_emb(q, kv=kv, seqlen_offset=seqlen_offset)
|
585 |
|
586 |
if past_key_values is not None:
|
587 |
+
kv = _update_kv_cache(kv, past_key_values, self.layer_idx)
|
588 |
|
589 |
+
if self.checkpointing:
|
590 |
+
return torch.utils.checkpoint.checkpoint(
|
591 |
+
self.inner_cross_attn, q, kv, attention_mask=attention_mask, causal=causal
|
592 |
+
)
|
593 |
|
594 |
+
return self.inner_cross_attn(q, kv, attention_mask=attention_mask, causal=causal)
|
595 |
|
596 |
+
def forward(
|
597 |
+
self,
|
598 |
+
x: torch.FloatTensor,
|
599 |
+
past_key_values: Optional[InferenceParams] = None,
|
600 |
+
attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
|
601 |
+
**kwargs,
|
602 |
+
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
603 |
+
if attention_mask is not None and torch.any(~attention_mask.bool()):
|
604 |
+
attention_mask = attention_mask.bool()
|
605 |
+
else:
|
606 |
+
attention_mask = None
|
607 |
+
|
608 |
+
# MHA
|
609 |
+
if self.n_head == self.n_head_kv:
|
610 |
+
if past_key_values is None:
|
611 |
+
# If `past_key_values` are not supplied, we run self-attention
|
612 |
+
attn_output = self._forward_self_attn(x, attention_mask)
|
613 |
else:
|
614 |
+
# If `past_key_values` are supplied, it means that we might have cached values and
|
615 |
+
# could take advantage of cross-attention
|
616 |
+
attn_output = self._forward_cross_attn(x, past_key_values, attention_mask)
|
617 |
+
# MQA / GQA
|
618 |
else:
|
619 |
+
# Regardless of `past_key_values` being supplied or not, it always use cross-attention
|
620 |
+
# because `q` and `kv` lengths might be different
|
621 |
+
attn_output = self._forward_cross_attn(x, past_key_values, attention_mask)
|
622 |
|
623 |
output = rearrange(attn_output, "... h d -> ... (h d)")
|
624 |
output = self.out_proj(output)
|
|
|
736 |
if module.padding_idx is not None:
|
737 |
module.weight.data[module.padding_idx].zero_()
|
738 |
elif isinstance(module, nn.LayerNorm):
|
739 |
+
if module.bias is not None:
|
740 |
+
module.bias.data.zero_()
|
741 |
module.weight.data.fill_(1.0)
|
742 |
|
743 |
def prepare_inputs_for_generation(
|
744 |
self,
|
745 |
input_ids: torch.LongTensor,
|
746 |
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
|
747 |
+
attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
|
748 |
**kwargs,
|
749 |
) -> Dict[str, Any]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
750 |
if past_key_values is None or not (isinstance(past_key_values, InferenceParams)):
|
751 |
past_key_values = InferenceParams(
|
752 |
+
max_seqlen=self.config.n_positions,
|
753 |
max_batch_size=input_ids.shape[0],
|
754 |
+
seqlen_offset=0,
|
|
|
755 |
batch_size_offset=0,
|
|
|
756 |
key_value_memory_dict={},
|
757 |
+
lengths_per_sample=None,
|
758 |
)
|
759 |
else:
|
760 |
# Assume that `past_key_values` has cached all tokens up to the last token in `input_ids`
|
761 |
+
past_key_values.seqlen_offset = len(input_ids[0]) - 1
|
762 |
input_ids = input_ids[:, -1].unsqueeze(-1)
|
763 |
|
764 |
return {
|
|
|
767 |
"attention_mask": attention_mask,
|
768 |
}
|
769 |
|
770 |
+
def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False) -> None:
|
771 |
+
if isinstance(module, MixFormerSequentialPreTrainedModel):
|
772 |
+
module.gradient_checkpointing = value
|
773 |
|
774 |
|
775 |
class MixFormerSequentialForCausalLM(MixFormerSequentialPreTrainedModel):
|
|
|
811 |
labels: Optional[torch.LongTensor] = None,
|
812 |
**kwargs,
|
813 |
) -> CausalLMOutputWithPast:
|
814 |
+
hidden_layer = self.layers[0](input_ids)
|
815 |
+
for module in self.layers[1:-1]:
|
816 |
+
hidden_layer = module(hidden_layer, past_key_values=past_key_values, attention_mask=attention_mask)
|
817 |
+
lm_logits = self.layers[-1](hidden_layer)
|
|
|
|
|
|
|
818 |
|
819 |
loss = None
|
820 |
if labels is not None:
|