Update README.md
Browse files
README.md
CHANGED
@@ -27,17 +27,17 @@ You can use the raw model for encoding document images into a vector space, but
|
|
27 |
Here is how to use this model in PyTorch:
|
28 |
|
29 |
```python
|
30 |
-
from transformers import
|
31 |
import torch
|
32 |
from PIL import Image
|
33 |
|
34 |
image = Image.open('path_to_your_document_image').convert('RGB')
|
35 |
|
36 |
-
|
37 |
model = BeitForMaskedImageModeling.from_pretrained("microsoft/dit-large")
|
38 |
|
39 |
num_patches = (model.config.image_size // model.config.patch_size) ** 2
|
40 |
-
pixel_values =
|
41 |
# create random boolean mask of shape (batch_size, num_patches)
|
42 |
bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool()
|
43 |
|
|
|
27 |
Here is how to use this model in PyTorch:
|
28 |
|
29 |
```python
|
30 |
+
from transformers import BeitImageProcessor, BeitForMaskedImageModeling
|
31 |
import torch
|
32 |
from PIL import Image
|
33 |
|
34 |
image = Image.open('path_to_your_document_image').convert('RGB')
|
35 |
|
36 |
+
processor = BeitImageProcessor.from_pretrained("microsoft/dit-large")
|
37 |
model = BeitForMaskedImageModeling.from_pretrained("microsoft/dit-large")
|
38 |
|
39 |
num_patches = (model.config.image_size // model.config.patch_size) ** 2
|
40 |
+
pixel_values = processor(images=image, return_tensors="pt").pixel_values
|
41 |
# create random boolean mask of shape (batch_size, num_patches)
|
42 |
bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool()
|
43 |
|