|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Processor class for Florence-2. |
|
""" |
|
|
|
import re |
|
import logging |
|
from typing import List, Optional, Union |
|
import numpy as np |
|
import math |
|
|
|
import torch |
|
|
|
from transformers.feature_extraction_utils import BatchFeature |
|
from transformers.image_utils import ImageInput, is_valid_image |
|
from transformers.processing_utils import ProcessorMixin |
|
from transformers.tokenization_utils_base import ( |
|
PaddingStrategy, |
|
PreTokenizedInput, |
|
TextInput, |
|
TruncationStrategy, |
|
) |
|
from transformers import BartTokenizer, BartTokenizerFast |
|
from transformers.utils import TensorType |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def is_url(val) -> bool: |
|
return isinstance(val, str) and val.startswith("http") |
|
|
|
|
|
def is_image_or_image_url(elem): |
|
return is_url(elem) or is_valid_image(elem) |
|
|
|
|
|
def _is_str_or_image(elem): |
|
return isinstance(elem, (str)) or is_image_or_image_url(elem) |
|
|
|
|
|
class Florence2Processor(ProcessorMixin): |
|
r""" |
|
Constructs a Florence2 processor which wraps a Florence2 image processor and a Florence2 tokenizer into a single processor. |
|
|
|
[`Florence2Processor`] offers all the functionalities of [`CLIPImageProcessor`] and [`BartTokenizerFast`]. See the |
|
[`~Florence2Processor.__call__`] and [`~Florence2Processor.decode`] for more information. |
|
|
|
Args: |
|
image_processor ([`CLIPImageProcessor`], *optional*): |
|
The image processor is a required input. |
|
tokenizer ([`BartTokenizerFast`], *optional*): |
|
The tokenizer is a required input. |
|
""" |
|
|
|
attributes = ["image_processor", "tokenizer"] |
|
image_processor_class = "CLIPImageProcessor" |
|
tokenizer_class = ("BartTokenizer", "BartTokenizerFast") |
|
|
|
def __init__( |
|
self, |
|
image_processor=None, |
|
tokenizer=None, |
|
): |
|
if image_processor is None: |
|
raise ValueError("You need to specify an `image_processor`.") |
|
if tokenizer is None: |
|
raise ValueError("You need to specify a `tokenizer`.") |
|
if not hasattr(image_processor, "image_seq_length"): |
|
raise ValueError("Image processor is missing an `image_seq_length` attribute.") |
|
|
|
self.image_seq_length = image_processor.image_seq_length |
|
|
|
tokens_to_add = { |
|
'additional_special_tokens': \ |
|
tokenizer.additional_special_tokens + \ |
|
['<od>', '</od>', '<ocr>', '</ocr>'] + \ |
|
[f'<loc_{x}>' for x in range(1000)] + \ |
|
['<cap>', '</cap>', '<ncap>', '</ncap>','<dcap>', '</dcap>', '<grounding>', '</grounding>', '<seg>', '</seg>', '<sep>', '<region_cap>', '</region_cap>', '<region_to_desciption>', '</region_to_desciption>', '<proposal>', '</proposal>', '<poly>', '</poly>', '<and>'] |
|
} |
|
tokenizer.add_special_tokens(tokens_to_add) |
|
|
|
self.tasks_answer_post_processing_type = { |
|
'<OCR>': 'pure_text', |
|
'<OCR_WITH_REGION>': 'ocr', |
|
'<CAPTION>': 'pure_text', |
|
'<DETAILED_CAPTION>': 'pure_text', |
|
'<MORE_DETAILED_CAPTION>': 'pure_text', |
|
'<OD>': 'description_with_bboxes', |
|
'<DENSE_REGION_CAPTION>': 'description_with_bboxes', |
|
'<CAPTION_TO_PHRASE_GROUNDING>': "phrase_grounding", |
|
'<REFERRING_EXPRESSION_SEGMENTATION>': 'polygons', |
|
'<REGION_TO_SEGMENTATION>': 'polygons', |
|
'<OPEN_VOCABULARY_DETECTION>': 'description_with_bboxes_or_polygons', |
|
'<REGION_TO_CATEGORY>': 'pure_text', |
|
'<REGION_TO_DESCRIPTION>': 'pure_text', |
|
'<REGION_TO_OCR>': 'pure_text', |
|
'<REGION_PROPOSAL>': 'bboxes' |
|
} |
|
|
|
self.task_prompts_without_inputs = { |
|
'<OCR>': 'What is the text in the image?', |
|
'<OCR_WITH_REGION>': 'What is the text in the image, with regions?', |
|
'<CAPTION>': 'What does the image describe?', |
|
'<DETAILED_CAPTION>': 'Describe in detail what is shown in the image.', |
|
'<MORE_DETAILED_CAPTION>': 'Describe with a paragraph what is shown in the image.', |
|
'<OD>': 'Locate the objects with category name in the image.', |
|
'<DENSE_REGION_CAPTION>': 'Locate the objects in the image, with their descriptions.', |
|
'<REGION_PROPOSAL>': 'Locate the region proposals in the image.' |
|
} |
|
|
|
self.task_prompts_with_input = { |
|
'<CAPTION_TO_PHRASE_GROUNDING>': "Locate the phrases in the caption: {input}", |
|
'<REFERRING_EXPRESSION_SEGMENTATION>': 'Locate {input} in the image with mask', |
|
'<REGION_TO_SEGMENTATION>': 'What is the polygon mask of region {input}', |
|
'<OPEN_VOCABULARY_DETECTION>': 'Locate {input} in the image.', |
|
'<REGION_TO_CATEGORY>': 'What is the region {input}?', |
|
'<REGION_TO_DESCRIPTION>': 'What does the region {input} describe?', |
|
'<REGION_TO_OCR>': 'What text is in the region {input}?', |
|
} |
|
|
|
self.post_processor = Florence2PostProcesser(tokenizer=tokenizer) |
|
|
|
|
|
super().__init__(image_processor, tokenizer) |
|
|
|
def _construct_prompts(self, text): |
|
|
|
prompts = [] |
|
for _text in text: |
|
|
|
for task_token, task_prompt in self.task_prompts_without_inputs.items(): |
|
if task_token in _text: |
|
assert _text == task_token, f"Task token {task_token} should be the only token in the text." |
|
_text = task_prompt |
|
break |
|
|
|
for task_token, task_prompt in self.task_prompts_with_input.items(): |
|
if task_token in _text: |
|
_text = task_prompt.format(input=_text.replace(task_token, '')) |
|
break |
|
prompts.append(_text) |
|
return prompts |
|
|
|
def __call__( |
|
self, |
|
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, |
|
images: ImageInput = None, |
|
tokenize_newline_separately: bool = True, |
|
padding: Union[bool, str, PaddingStrategy] = False, |
|
truncation: Union[bool, str, TruncationStrategy] = None, |
|
max_length=None, |
|
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, |
|
do_resize: bool = None, |
|
do_normalize: bool = None, |
|
image_mean: Optional[Union[float, List[float]]] = None, |
|
image_std: Optional[Union[float, List[float]]] = None, |
|
data_format: Optional["ChannelDimension"] = "channels_first", |
|
input_data_format: Optional[ |
|
Union[str, "ChannelDimension"] |
|
] = None, |
|
resample: "PILImageResampling" = None, |
|
do_convert_rgb: bool = None, |
|
do_thumbnail: bool = None, |
|
do_align_long_axis: bool = None, |
|
do_rescale: bool = None, |
|
) -> BatchFeature: |
|
""" |
|
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` |
|
and `kwargs` arguments to BartTokenizerFast's [`~BartTokenizerFast.__call__`] if `text` is not `None` to encode |
|
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to |
|
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring |
|
of the above two methods for more information. |
|
|
|
Args: |
|
text (`str`, `List[str]`, `List[List[str]]`): |
|
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings |
|
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set |
|
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences). |
|
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): |
|
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch |
|
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a |
|
number of channels, H and W are image height and width. |
|
tokenize_newline_separately (`bool`, defaults to `True`): |
|
Adds a separately tokenized '\n' at the end of the prompt. |
|
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): |
|
Select a strategy to pad the returned sequences (according to the model's padding side and padding |
|
index) among: |
|
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single |
|
sequence if provided). |
|
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum |
|
acceptable input length for the model if that argument is not provided. |
|
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different |
|
lengths). |
|
max_length (`int`, *optional*): |
|
Maximum length of the returned list and optionally padding length (see above). |
|
truncation (`bool`, *optional*): |
|
Activates truncation to cut input sequences longer than `max_length` to `max_length`. |
|
return_tensors (`str` or [`~utils.TensorType`], *optional*): |
|
If set, will return tensors of a particular framework. Acceptable values are: |
|
|
|
- `'tf'`: Return TensorFlow `tf.constant` objects. |
|
- `'pt'`: Return PyTorch `torch.Tensor` objects. |
|
- `'np'`: Return NumPy `np.ndarray` objects. |
|
- `'jax'`: Return JAX `jnp.ndarray` objects. |
|
|
|
Returns: |
|
[`BatchFeature`]: A [`BatchFeature`] with the following fields: |
|
|
|
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. If `suffix` |
|
is provided, the `input_ids` will also contain the suffix input ids. |
|
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when |
|
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not |
|
`None`). |
|
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. |
|
- **labels** -- Labels compatible with training if `suffix` is not None |
|
""" |
|
|
|
return_token_type_ids = False |
|
|
|
if images is None: |
|
raise ValueError("`images` are expected as arguments to a `Florence2Processor` instance.") |
|
if text is None: |
|
logger.warning_once( |
|
"You are using Florence-2 without a text prompt." |
|
) |
|
text = "" |
|
|
|
if isinstance(text, List) and isinstance(images, List): |
|
if len(images) < len(text): |
|
raise ValueError( |
|
f"Received {len(images)} images for {len(text)} prompts. Each prompt should be associated with an image." |
|
) |
|
if _is_str_or_image(text): |
|
text = [text] |
|
elif isinstance(text, list) and _is_str_or_image(text[0]): |
|
pass |
|
|
|
pixel_values = self.image_processor( |
|
images, |
|
do_resize=do_resize, |
|
do_normalize=do_normalize, |
|
return_tensors=return_tensors, |
|
image_mean=image_mean, |
|
image_std=image_std, |
|
input_data_format=input_data_format, |
|
data_format=data_format, |
|
resample=resample, |
|
do_convert_rgb=do_convert_rgb, |
|
)["pixel_values"] |
|
|
|
if max_length is not None: |
|
max_length -= self.image_seq_length |
|
|
|
text = self._construct_prompts(text) |
|
|
|
inputs = self.tokenizer( |
|
text, |
|
return_tensors=return_tensors, |
|
padding=padding, |
|
max_length=max_length, |
|
truncation=truncation, |
|
return_token_type_ids=return_token_type_ids, |
|
) |
|
|
|
return_data = {**inputs, "pixel_values": pixel_values} |
|
|
|
if return_token_type_ids: |
|
labels = inputs["input_ids"].masked_fill(inputs["token_type_ids"] == 0, -100) |
|
return_data.update({"labels": labels}) |
|
return BatchFeature(data=return_data) |
|
|
|
|
|
def batch_decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please |
|
refer to the docstring of this method for more information. |
|
""" |
|
return self.tokenizer.batch_decode(*args, **kwargs) |
|
|
|
|
|
def decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to |
|
the docstring of this method for more information. |
|
""" |
|
return self.tokenizer.decode(*args, **kwargs) |
|
|
|
@property |
|
|
|
def model_input_names(self): |
|
tokenizer_input_names = self.tokenizer.model_input_names |
|
image_processor_input_names = self.image_processor.model_input_names |
|
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) |
|
|
|
def post_process_generation(self, text=None, sequence=None, transition_beam_score=None, task=None, image_size=None): |
|
""" |
|
Post-process the output of the model to each of the task outputs. |
|
|
|
Args: |
|
text (`str`): The text to post-process. |
|
task (`str`): The task to post-process the text for. |
|
image_size (`Tuple[int, int]`): The size of the image. height x width. |
|
""" |
|
|
|
task_answer_post_processing_type = self.tasks_answer_post_processing_type.get(task, 'pure_text') |
|
task_answer = self.post_processor( |
|
text=text, |
|
sequence=sequence, |
|
transition_beam_score=transition_beam_score, |
|
image_size=image_size, |
|
parse_tasks=task_answer_post_processing_type, |
|
)[task_answer_post_processing_type] |
|
|
|
if task_answer_post_processing_type == 'pure_text': |
|
final_answer = task_answer |
|
|
|
final_answer = final_answer.replace('<s>', '').replace('</s>', '') |
|
elif task_answer_post_processing_type in ['od', 'description_with_bboxes', 'bboxes']: |
|
od_instances = task_answer |
|
bboxes_od = [_od_instance['bbox'] for _od_instance in od_instances] |
|
labels_od = [str(_od_instance['cat_name']) for _od_instance in od_instances] |
|
final_answer = {'bboxes': bboxes_od, 'labels': labels_od} |
|
if len(od_instances) and 'score' in od_instances[0]: |
|
scores_od = [_od_instance['score'] for _od_instance in od_instances] |
|
final_answer['scores'] = scores_od |
|
elif task_answer_post_processing_type in ['ocr']: |
|
bboxes = [_od_instance['quad_box'] for _od_instance in task_answer] |
|
labels = [str(_od_instance['text']) for _od_instance in task_answer] |
|
final_answer = {'quad_boxes': bboxes, 'labels': labels} |
|
elif task_answer_post_processing_type in ['phrase_grounding']: |
|
bboxes = [] |
|
labels = [] |
|
for _grounded_phrase in task_answer: |
|
for _bbox in _grounded_phrase['bbox']: |
|
bboxes.append(_bbox) |
|
labels.append(_grounded_phrase['cat_name']) |
|
final_answer = {'bboxes': bboxes, 'labels': labels} |
|
elif task_answer_post_processing_type in ['description_with_polygons', 'polygons']: |
|
labels = [] |
|
polygons = [] |
|
for result in task_answer: |
|
label = result['cat_name'] |
|
_polygons = result['polygons'] |
|
labels.append(label) |
|
polygons.append(_polygons) |
|
final_answer = {'polygons': polygons, 'labels': labels} |
|
elif task_answer_post_processing_type in ['description_with_bboxes_or_polygons']: |
|
bboxes = [] |
|
bboxes_labels = [] |
|
polygons = [] |
|
polygons_labels = [] |
|
for result in task_answer: |
|
label = result['cat_name'] |
|
if 'polygons' in result: |
|
_polygons = result['polygons'] |
|
polygons.append(_polygons) |
|
polygons_labels.append(label) |
|
else: |
|
_bbox = result['bbox'] |
|
bboxes.append(_bbox) |
|
bboxes_labels.append(label) |
|
final_answer = {'bboxes': bboxes, 'bboxes_labels': bboxes_labels, 'polygons': polygons, 'polygons_labels': polygons_labels} |
|
else: |
|
raise ValueError('Unknown task answer post processing type: {}'.format(task_answer_post_processing_type)) |
|
|
|
final_answer = { |
|
task: final_answer} |
|
return final_answer |
|
|
|
class BoxQuantizer(object): |
|
def __init__(self, mode, bins): |
|
self.mode = mode |
|
self.bins = bins |
|
|
|
def quantize(self, boxes: torch.Tensor, size): |
|
bins_w, bins_h = self.bins |
|
size_w, size_h = size |
|
size_per_bin_w = size_w / bins_w |
|
size_per_bin_h = size_h / bins_h |
|
xmin, ymin, xmax, ymax = boxes.split(1, dim=-1) |
|
|
|
if self.mode == 'floor': |
|
quantized_xmin = ( |
|
xmin / size_per_bin_w).floor().clamp(0, bins_w - 1) |
|
quantized_ymin = ( |
|
ymin / size_per_bin_h).floor().clamp(0, bins_h - 1) |
|
quantized_xmax = ( |
|
xmax / size_per_bin_w).floor().clamp(0, bins_w - 1) |
|
quantized_ymax = ( |
|
ymax / size_per_bin_h).floor().clamp(0, bins_h - 1) |
|
|
|
elif self.mode == 'round': |
|
raise NotImplementedError() |
|
|
|
else: |
|
raise ValueError('Incorrect quantization type.') |
|
|
|
quantized_boxes = torch.cat( |
|
(quantized_xmin, quantized_ymin, quantized_xmax, quantized_ymax), dim=-1 |
|
).int() |
|
|
|
return quantized_boxes |
|
|
|
def dequantize(self, boxes: torch.Tensor, size): |
|
bins_w, bins_h = self.bins |
|
size_w, size_h = size |
|
size_per_bin_w = size_w / bins_w |
|
size_per_bin_h = size_h / bins_h |
|
xmin, ymin, xmax, ymax = boxes.split(1, dim=-1) |
|
|
|
if self.mode == 'floor': |
|
|
|
dequantized_xmin = (xmin + 0.5) * size_per_bin_w |
|
dequantized_ymin = (ymin + 0.5) * size_per_bin_h |
|
dequantized_xmax = (xmax + 0.5) * size_per_bin_w |
|
dequantized_ymax = (ymax + 0.5) * size_per_bin_h |
|
|
|
elif self.mode == 'round': |
|
raise NotImplementedError() |
|
|
|
else: |
|
raise ValueError('Incorrect quantization type.') |
|
|
|
dequantized_boxes = torch.cat( |
|
(dequantized_xmin, dequantized_ymin, |
|
dequantized_xmax, dequantized_ymax), dim=-1 |
|
) |
|
|
|
return dequantized_boxes |
|
|
|
|
|
class CoordinatesQuantizer(object): |
|
""" |
|
Quantize coornidates (Nx2) |
|
""" |
|
|
|
def __init__(self, mode, bins): |
|
self.mode = mode |
|
self.bins = bins |
|
|
|
def quantize(self, coordinates: torch.Tensor, size): |
|
bins_w, bins_h = self.bins |
|
size_w, size_h = size |
|
size_per_bin_w = size_w / bins_w |
|
size_per_bin_h = size_h / bins_h |
|
assert coordinates.shape[-1] == 2, 'coordinates should be shape (N, 2)' |
|
x, y = coordinates.split(1, dim=-1) |
|
|
|
if self.mode == 'floor': |
|
quantized_x = (x / size_per_bin_w).floor().clamp(0, bins_w - 1) |
|
quantized_y = (y / size_per_bin_h).floor().clamp(0, bins_h - 1) |
|
|
|
elif self.mode == 'round': |
|
raise NotImplementedError() |
|
|
|
else: |
|
raise ValueError('Incorrect quantization type.') |
|
|
|
quantized_coordinates = torch.cat( |
|
(quantized_x, quantized_y), dim=-1 |
|
).int() |
|
|
|
return quantized_coordinates |
|
|
|
def dequantize(self, coordinates: torch.Tensor, size): |
|
bins_w, bins_h = self.bins |
|
size_w, size_h = size |
|
size_per_bin_w = size_w / bins_w |
|
size_per_bin_h = size_h / bins_h |
|
assert coordinates.shape[-1] == 2, 'coordinates should be shape (N, 2)' |
|
x, y = coordinates.split(1, dim=-1) |
|
|
|
if self.mode == 'floor': |
|
|
|
dequantized_x = (x + 0.5) * size_per_bin_w |
|
dequantized_y = (y + 0.5) * size_per_bin_h |
|
|
|
elif self.mode == 'round': |
|
raise NotImplementedError() |
|
|
|
else: |
|
raise ValueError('Incorrect quantization type.') |
|
|
|
dequantized_coordinates = torch.cat( |
|
(dequantized_x, dequantized_y), dim=-1 |
|
) |
|
|
|
return dequantized_coordinates |
|
|
|
|
|
class Florence2PostProcesser(object): |
|
""" |
|
Florence-2 post process for converting text prediction to various tasks results. |
|
|
|
Args: |
|
config: A dict of configs. |
|
tokenizer: A tokenizer for decoding text to spans. |
|
sample config: |
|
UNIFIED_POST_PROCESS: |
|
# commom configs |
|
NUM_BBOX_HEIGHT_BINS: 1000 |
|
NUM_BBOX_WIDTH_BINS: 1000 |
|
COORDINATES_HEIGHT_BINS: 1000 |
|
COORDINATES_WIDTH_BINS: 1000 |
|
# task specific configs, override the common configs |
|
PRASE_TASKS: |
|
- TASK_NAME: 'video_dense_caption' |
|
PATTERN: 'r<time_(\d+)><time_(\d+)>([a-zA-Z0-9 ]+)' |
|
SCORE_MODE: 'avg_cat_name_scores' |
|
NUM_BINS: 100 |
|
- TASK_NAME: 'od' |
|
PATTERN: 'r<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>([a-zA-Z0-9 ]+)' |
|
SCORE_MODE: 'avg_cat_name_scores' |
|
|
|
Returns: |
|
parsed_dict (dict): A dict of parsed results. |
|
""" |
|
def __init__( |
|
self, |
|
tokenizer=None |
|
): |
|
parse_tasks = [] |
|
parse_task_configs = {} |
|
config = self._create_default_config() |
|
for task in config['PARSE_TASKS']: |
|
parse_tasks.append(task['TASK_NAME']) |
|
parse_task_configs[task['TASK_NAME']] = task |
|
|
|
self.config = config |
|
self.parse_tasks = parse_tasks |
|
self.parse_tasks_configs = parse_task_configs |
|
|
|
self.tokenizer = tokenizer |
|
if self.tokenizer is not None: |
|
self.all_special_tokens = set(self.tokenizer.all_special_tokens) |
|
|
|
self.init_quantizers() |
|
self.black_list_of_phrase_grounding = self._create_black_list_of_phrase_grounding() |
|
|
|
def _create_black_list_of_phrase_grounding(self): |
|
black_list = {} |
|
|
|
if 'phrase_grounding' in self.parse_tasks and self.parse_tasks_configs['phrase_grounding']['FILTER_BY_BLACK_LIST']: |
|
black_list = set( |
|
['it', 'I', 'me', 'mine', |
|
'you', 'your', 'yours', |
|
'he', 'him', 'his', |
|
'she', 'her', 'hers', |
|
'they', 'them', 'their', 'theirs', |
|
'one', 'oneself', |
|
'we', 'us', 'our', 'ours', |
|
'you', 'your', 'yours', |
|
'they', 'them', 'their', 'theirs', |
|
'mine', 'yours', 'his', 'hers', 'its', |
|
'ours', 'yours', 'theirs', |
|
'myself', 'yourself', 'himself', 'herself', 'itself', |
|
'ourselves', 'yourselves', 'themselves', |
|
'this', 'that', |
|
'these', 'those', |
|
'who', 'whom', 'whose', 'which', 'what', |
|
'who', 'whom', 'whose', 'which', 'that', |
|
'all', 'another', 'any', 'anybody', 'anyone', 'anything', |
|
'each', 'everybody', 'everyone', 'everything', |
|
'few', 'many', 'nobody', 'none', 'one', 'several', |
|
'some', 'somebody', 'someone', 'something', |
|
'each other', 'one another', |
|
'myself', 'yourself', 'himself', 'herself', 'itself', |
|
'ourselves', 'yourselves', 'themselves', |
|
'the image', 'image', 'images', 'the', 'a', 'an', 'a group', |
|
'other objects', 'lots', 'a set', |
|
] |
|
) |
|
|
|
return black_list |
|
|
|
def _create_default_config(self): |
|
config = { |
|
'NUM_BBOX_HEIGHT_BINS': 1000, |
|
'NUM_BBOX_WIDTH_BINS': 1000, |
|
'BOX_QUANTIZATION_MODE': 'floor', |
|
'COORDINATES_HEIGHT_BINS': 1000, |
|
'COORDINATES_WIDTH_BINS': 1000, |
|
'COORDINATES_QUANTIZATION_MODE': 'floor', |
|
'PARSE_TASKS': [ |
|
{ |
|
'TASK_NAME': 'od', |
|
'PATTERN': r'([a-zA-Z0-9 ]+)<loc_(\\d+)><loc_(\\d+)><loc_(\\d+)><loc_(\\d+)>', |
|
'SCORE_MODE': 'avg_loc_scores' |
|
}, |
|
{ |
|
'TASK_NAME': 'ocr', |
|
'PATTERN': r'(.+?)<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>', |
|
'AREA_THRESHOLD': 0.00 |
|
}, |
|
{ |
|
'TASK_NAME': 'phrase_grounding', |
|
'FILTER_BY_BLACK_LIST': True |
|
}, |
|
{ |
|
'TASK_NAME': 'pure_text', |
|
}, |
|
{ |
|
'TASK_NAME': 'description_with_bboxes', |
|
'SCORE_MODE': 'avg_loc_scores' |
|
}, |
|
{ |
|
'TASK_NAME': 'description_with_polygons', |
|
}, |
|
{ |
|
'TASK_NAME': 'polygons', |
|
}, |
|
{ |
|
'TASK_NAME': 'bboxes', |
|
}, |
|
{ |
|
'TASK_NAME': 'description_with_bboxes_or_polygons', |
|
} |
|
] |
|
} |
|
|
|
return config |
|
|
|
def init_quantizers(self): |
|
|
|
num_bbox_height_bins = self.config.get('NUM_BBOX_HEIGHT_BINS', 1000) |
|
num_bbox_width_bins = self.config.get('NUM_BBOX_WIDTH_BINS', 1000) |
|
box_quantization_mode = self.config.get('BOX_QUANTIZATION_MODE', 'floor') |
|
self.box_quantizer = BoxQuantizer( |
|
box_quantization_mode, |
|
(num_bbox_width_bins, num_bbox_height_bins), |
|
) |
|
|
|
num_bbox_height_bins = self.config['COORDINATES_HEIGHT_BINS'] if 'COORDINATES_HEIGHT_BINS' in self.config else self.config.get('NUM_BBOX_HEIGHT_BINS', 1000) |
|
num_bbox_width_bins = self.config['COORDINATES_WIDTH_BINS'] if 'COORDINATES_WIDTH_BINS' in self.config else self.config.get('NUM_BBOX_WIDTH_BINS', 1000) |
|
box_quantization_mode = self.config.get('COORDINATES_QUANTIZATION_MODE') if 'COORDINATES_QUANTIZATION_MODE' in self.config else self.config.get('BOX_QUANTIZATION_MODE', 'floor') |
|
self.coordinates_quantizer = CoordinatesQuantizer( |
|
box_quantization_mode, |
|
(num_bbox_width_bins, num_bbox_height_bins), |
|
) |
|
|
|
def decode_with_spans(self, tokenizer, token_ids): |
|
filtered_tokens = tokenizer.convert_ids_to_tokens( |
|
token_ids, skip_special_tokens=False) |
|
assert len(filtered_tokens) == len(token_ids) |
|
sub_texts = [] |
|
for token in filtered_tokens: |
|
if token in self.all_special_tokens: |
|
sub_texts.append(token) |
|
else: |
|
if isinstance(tokenizer, (BartTokenizer, BartTokenizerFast)): |
|
sub_text = tokenizer.convert_tokens_to_string([token]) |
|
else: |
|
raise ValueError(f'type {type(tokenizer)} not supported') |
|
sub_texts.append(sub_text) |
|
|
|
text = '' |
|
spans = [] |
|
for sub_text in sub_texts: |
|
span = (len(text), len(text) + len(sub_text)) |
|
text += sub_text |
|
spans.append(span) |
|
return text, spans |
|
|
|
def parse_od_from_text_and_spans( |
|
self, |
|
text, |
|
pattern, |
|
image_size, |
|
phrase_centric=False |
|
): |
|
parsed = list(re.finditer(pattern, text)) |
|
|
|
instances = [] |
|
for i in range(len(parsed)): |
|
|
|
instance = {} |
|
|
|
if phrase_centric: |
|
bbox_bins = [int(parsed[i].group(j)) for j in range(2, 6)] |
|
else: |
|
bbox_bins = [int(parsed[i].group(j)) for j in range(1, 5)] |
|
instance['bbox'] = self.box_quantizer.dequantize( |
|
boxes=torch.tensor(bbox_bins), |
|
size=image_size |
|
).tolist() |
|
|
|
if phrase_centric: |
|
instance['cat_name'] = parsed[i].group(1).lower().strip() |
|
else: |
|
instance['cat_name'] = parsed[i].group(5).lower().strip() |
|
instances.append(instance) |
|
|
|
return instances |
|
|
|
def parse_ocr_from_text_and_spans(self, |
|
text, |
|
pattern, |
|
image_size, |
|
area_threshold=-1.0, |
|
): |
|
bboxes = [] |
|
labels = [] |
|
text = text.replace('<s>', '') |
|
|
|
parsed = re.findall(pattern, text) |
|
instances = [] |
|
image_width, image_height = image_size |
|
|
|
for ocr_line in parsed: |
|
ocr_content = ocr_line[0] |
|
quad_box = ocr_line[1:] |
|
quad_box = [int(i) for i in quad_box] |
|
quad_box = self.coordinates_quantizer.dequantize( |
|
torch.tensor(np.array(quad_box).reshape(-1, 2)), |
|
size=image_size |
|
).reshape(-1).tolist() |
|
|
|
if area_threshold > 0: |
|
x_coords = [i for i in quad_box[0::2]] |
|
y_coords = [i for i in quad_box[1::2]] |
|
|
|
|
|
area = 0.5 * abs(sum(x_coords[i] * y_coords[i + 1] - x_coords[i + 1] * y_coords[i] for i in range(4 - 1))) |
|
|
|
if area < (image_width * image_height) * area_threshold: |
|
continue |
|
|
|
bboxes.append(quad_box) |
|
labels.append(ocr_content) |
|
instances.append({ |
|
'quad_box': quad_box, |
|
'text': ocr_content, |
|
}) |
|
return instances |
|
|
|
def parse_phrase_grounding_from_text_and_spans(self, text, pattern, image_size): |
|
|
|
cur_span = 0 |
|
if text.startswith('<s>'): |
|
cur_span += 3 |
|
|
|
text = text.replace('<s>', '') |
|
text = text.replace('</s>', '') |
|
text = text.replace('<pad>', '') |
|
|
|
pattern = r"([^<]+(?:<loc_\d+>){4,})" |
|
phrases = re.findall(pattern, text) |
|
|
|
|
|
pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_)' |
|
box_pattern = r'<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>' |
|
|
|
instances = [] |
|
for pharse_text in phrases: |
|
phrase_text_strip = pharse_text.replace('<ground>', '', 1) |
|
phrase_text_strip = pharse_text.replace('<obj>', '', 1) |
|
|
|
if phrase_text_strip == '': |
|
cur_span += len(pharse_text) |
|
continue |
|
|
|
|
|
instance = {} |
|
|
|
|
|
phrase = re.search(pattern, phrase_text_strip) |
|
if phrase is None: |
|
cur_span += len(pharse_text) |
|
continue |
|
|
|
|
|
bboxes_parsed = list(re.finditer(box_pattern, pharse_text)) |
|
if len(bboxes_parsed) == 0: |
|
cur_span += len(pharse_text) |
|
continue |
|
|
|
phrase = phrase.group() |
|
|
|
phrase = phrase.strip() |
|
|
|
if phrase in self.black_list_of_phrase_grounding: |
|
cur_span += len(pharse_text) |
|
continue |
|
|
|
|
|
bbox_bins = [[int(_bboxes_parsed.group(j)) for j in range(1, 5)] for _bboxes_parsed in bboxes_parsed] |
|
instance['bbox'] = self.box_quantizer.dequantize( |
|
boxes=torch.tensor(bbox_bins), |
|
size=image_size |
|
).tolist() |
|
|
|
|
|
phrase = phrase.encode('ascii',errors='ignore').decode('ascii') |
|
instance['cat_name'] = phrase |
|
|
|
instances.append(instance) |
|
|
|
return instances |
|
|
|
def parse_description_with_bboxes_from_text_and_spans( |
|
self, |
|
text, |
|
spans=None, |
|
scores=None, |
|
score_mode=None, |
|
pattern=None, |
|
image_size=None, |
|
allow_empty_phrase=False |
|
): |
|
def find_matched_token_indices(cur_span, token_spans): |
|
inds = [] |
|
for i, token_span in enumerate(token_spans): |
|
if not (token_span[1] <= cur_span[0] or token_span[0] >= cur_span[1]): |
|
inds.append(i) |
|
return inds |
|
|
|
cur_span = 0 |
|
if text.startswith('<s>'): |
|
cur_span += 3 |
|
|
|
text = text.replace('<s>', '') |
|
text = text.replace('</s>', '') |
|
text = text.replace('<pad>', '') |
|
|
|
if allow_empty_phrase: |
|
pattern = rf"(?:(?:<loc_\d+>){{4,}})" |
|
else: |
|
pattern = r"([^<]+(?:<loc_\d+>){4,})" |
|
phrases = re.findall(pattern, text) |
|
|
|
|
|
pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_)' |
|
box_pattern = r'<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>' |
|
|
|
instances = [] |
|
for pharse_text in phrases: |
|
phrase_text_strip = pharse_text.replace('<ground>', '', 1) |
|
phrase_text_strip = pharse_text.replace('<obj>', '', 1) |
|
|
|
if phrase_text_strip == '' and not allow_empty_phrase: |
|
cur_span += len(pharse_text) |
|
continue |
|
|
|
|
|
phrase = re.search(pattern, phrase_text_strip) |
|
if phrase is None: |
|
cur_span += len(pharse_text) |
|
continue |
|
|
|
phrase_span = phrase.span() |
|
phrase = phrase.group() |
|
|
|
phrase = phrase.strip() |
|
|
|
|
|
bboxes_parsed = list(re.finditer(box_pattern, pharse_text)) |
|
if len(bboxes_parsed) == 0: |
|
cur_span += len(pharse_text) |
|
continue |
|
|
|
|
|
bbox_bins = [[int(_bboxes_parsed.group(j)) for j in range(1, 5)] for _bboxes_parsed in bboxes_parsed] |
|
|
|
bboxes = self.box_quantizer.dequantize( |
|
boxes=torch.tensor(bbox_bins), |
|
size=image_size |
|
).tolist() |
|
|
|
if score_mode == 'avg_loc_scores': |
|
if spans is None or scores is None: |
|
all_scores = None |
|
else: |
|
bbox_end_spans = [_bboxes_parsed.span(0) for _bboxes_parsed in bboxes_parsed] |
|
all_scores = [] |
|
for _spans in bbox_end_spans: |
|
token_inds = find_matched_token_indices((_spans[0] + cur_span, _spans[1]+ cur_span), spans) |
|
loc_scores = [scores[token_i] for token_i in token_inds] |
|
score = sum(loc_scores) / len(loc_scores) |
|
all_scores.append(score) |
|
elif score_mode == 'avg_cat_name_scores': |
|
if spans is None or scores is None: |
|
all_scores = None |
|
else: |
|
cat_name_token_inds = find_matched_token_indices((phrase_span[0] + cur_span, phrase_span[1]+cur_span), spans) |
|
cat_name_scores = [scores[token_i] for token_i in cat_name_token_inds] |
|
score = sum(cat_name_scores) / len(cat_name_scores) |
|
all_scores = [score] * len(bboxes) |
|
elif score_mode is None: |
|
all_scores = None |
|
else: |
|
raise ValueError('Unknown score mode: {}'.format(score_mode)) |
|
|
|
phrase = phrase.encode('ascii',errors='ignore').decode('ascii') |
|
for _idx, _bboxes in enumerate(bboxes): |
|
|
|
instance = {} |
|
instance['bbox'] = _bboxes |
|
|
|
instance['cat_name'] = phrase |
|
if all_scores is not None: |
|
instance['score'] = math.exp(all_scores[_idx]) |
|
instances.append(instance) |
|
|
|
cur_span += len(pharse_text) |
|
|
|
return instances |
|
|
|
def parse_description_with_polygons_from_text_and_spans(self, text, pattern, image_size, |
|
allow_empty_phrase=False, |
|
polygon_sep_token='<sep>', |
|
polygon_start_token='<poly>', |
|
polygon_end_token='</poly>', |
|
with_box_at_start=False, |
|
): |
|
|
|
|
|
|
|
|
|
text = text.replace('<s>', '') |
|
text = text.replace('</s>', '') |
|
text = text.replace('<pad>', '') |
|
|
|
if allow_empty_phrase: |
|
pattern = rf"(?:(?:<loc_\d+>|{re.escape(polygon_sep_token)}|{re.escape(polygon_start_token)}|{re.escape(polygon_end_token)}){{4,}})" |
|
else: |
|
|
|
|
|
|
|
pattern = rf"([^<]+(?:<loc_\d+>|{re.escape(polygon_sep_token)}|{re.escape(polygon_start_token)}|{re.escape(polygon_end_token)}){{4,}})" |
|
phrases = re.findall(pattern, text) |
|
|
|
phrase_string_pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_|<poly>)' |
|
box_pattern = rf'((?:<loc_\d+>)+)(?:{re.escape(polygon_sep_token)}|$)' |
|
|
|
|
|
polygons_instance_pattern = rf'{re.escape(polygon_start_token)}(.*?){re.escape(polygon_end_token)}' |
|
|
|
instances = [] |
|
for phrase_text in phrases: |
|
|
|
|
|
|
|
phrase_text_strip = re.sub(r'^loc_\d+>', '', phrase_text, count=1) |
|
|
|
|
|
|
|
|
|
if phrase_text_strip == '' and not allow_empty_phrase: |
|
continue |
|
|
|
|
|
|
|
phrase = re.search(phrase_string_pattern, phrase_text_strip) |
|
if phrase is None: |
|
continue |
|
phrase = phrase.group() |
|
|
|
phrase = phrase.strip() |
|
|
|
|
|
|
|
|
|
if polygon_start_token in phrase_text and polygon_end_token in phrase_text: |
|
polygons_instances_parsed = list(re.finditer(polygons_instance_pattern, phrase_text)) |
|
else: |
|
polygons_instances_parsed = [phrase_text] |
|
|
|
for _polygons_instances_parsed in polygons_instances_parsed: |
|
|
|
instance = {} |
|
|
|
|
|
if isinstance(_polygons_instances_parsed, str): |
|
polygons_parsed= list(re.finditer(box_pattern, _polygons_instances_parsed)) |
|
else: |
|
polygons_parsed= list(re.finditer(box_pattern, _polygons_instances_parsed.group(1))) |
|
if len(polygons_parsed) == 0: |
|
continue |
|
|
|
|
|
bbox = [] |
|
polygons = [] |
|
for _polygon_parsed in polygons_parsed: |
|
|
|
_polygon = _polygon_parsed.group(1) |
|
|
|
_polygon = [int(_loc_parsed.group(1)) for _loc_parsed in re.finditer(r'<loc_(\d+)>', _polygon)] |
|
if with_box_at_start and len(bbox) == 0: |
|
if len(_polygon) > 4: |
|
|
|
bbox = _polygon[:4] |
|
_polygon = _polygon[4:] |
|
else: |
|
bbox = [0, 0, 0, 0] |
|
|
|
if len(_polygon) % 2 == 1: |
|
_polygon = _polygon[:-1] |
|
|
|
|
|
_polygon = self.coordinates_quantizer.dequantize( |
|
torch.tensor(np.array(_polygon).reshape(-1, 2)), |
|
size=image_size |
|
).reshape(-1).tolist() |
|
|
|
polygons.append(_polygon) |
|
|
|
instance['cat_name'] = phrase |
|
instance['polygons'] = polygons |
|
if len(bbox) != 0: |
|
instance['bbox'] = self.box_quantizer.dequantize( |
|
boxes=torch.tensor([bbox]), |
|
size=image_size |
|
).tolist()[0] |
|
|
|
instances.append(instance) |
|
|
|
return instances |
|
|
|
def __call__( |
|
self, |
|
text=None, |
|
sequence=None, |
|
transition_beam_score=None, |
|
image_size=None, |
|
parse_tasks=None, |
|
): |
|
""" |
|
Args: |
|
text: model outputs |
|
image_size: (width, height) |
|
parse_tasks: a list of tasks to parse, if None, parse all tasks. |
|
|
|
""" |
|
if parse_tasks is not None: |
|
if isinstance(parse_tasks, str): |
|
parse_tasks = [parse_tasks] |
|
for _parse_task in parse_tasks: |
|
assert _parse_task in self.parse_tasks, f'parse task {_parse_task} not supported' |
|
|
|
|
|
assert sequence is not None or text is not None, 'sequence or text should be provided' |
|
assert sequence is None or text is None, 'only one of sequence and text should be provided' |
|
|
|
if sequence is not None: |
|
sequence = sequence.tolist()[1:] |
|
text, spans = self.decode_with_spans(self.tokenizer, sequence) |
|
if transition_beam_score is not None: |
|
transition_beam_score = transition_beam_score.tolist() |
|
assert len(sequence) == len(transition_beam_score) |
|
else: |
|
spans = None |
|
transition_beam_score = None |
|
|
|
parsed_dict = { |
|
'text': text |
|
} |
|
|
|
for task in self.parse_tasks: |
|
if parse_tasks is not None and task not in parse_tasks: |
|
continue |
|
|
|
pattern = self.parse_tasks_configs[task].get('PATTERN', None) |
|
score_mode = self.parse_tasks_configs[task].get('SCORE_MODE', None) |
|
|
|
if task == 'ocr': |
|
instances = self.parse_ocr_from_text_and_spans( |
|
text, |
|
pattern=pattern, |
|
image_size=image_size, |
|
area_threshold=self.parse_tasks_configs[task].get('AREA_THRESHOLD', 0.0), |
|
) |
|
parsed_dict['ocr'] = instances |
|
elif task == 'phrase_grounding': |
|
instances = self.parse_phrase_grounding_from_text_and_spans( |
|
text, |
|
pattern=pattern, |
|
image_size=image_size, |
|
) |
|
parsed_dict['phrase_grounding'] = instances |
|
elif task == 'pure_text': |
|
parsed_dict['pure_text'] = text |
|
elif task == 'description_with_bboxes': |
|
instances = self.parse_description_with_bboxes_from_text_and_spans( |
|
text, |
|
spans=spans, |
|
scores=transition_beam_score, |
|
score_mode=score_mode, |
|
pattern=pattern, |
|
image_size=image_size, |
|
) |
|
parsed_dict['description_with_bboxes'] = instances |
|
elif task == 'description_with_polygons': |
|
instances = self.parse_description_with_polygons_from_text_and_spans( |
|
text, |
|
pattern=pattern, |
|
image_size=image_size, |
|
) |
|
parsed_dict['description_with_polygons'] = instances |
|
elif task == 'polygons': |
|
instances = self.parse_description_with_polygons_from_text_and_spans( |
|
text, |
|
pattern=pattern, |
|
image_size=image_size, |
|
allow_empty_phrase=True, |
|
) |
|
parsed_dict['polygons'] = instances |
|
elif task == 'bboxes': |
|
instances = self.parse_description_with_bboxes_from_text_and_spans( |
|
text, |
|
pattern=pattern, |
|
image_size=image_size, |
|
allow_empty_phrase=True, |
|
) |
|
parsed_dict['bboxes'] = instances |
|
elif task == 'description_with_bboxes_or_polygons': |
|
if '<poly>' in text: |
|
|
|
instances = self.parse_description_with_polygons_from_text_and_spans( |
|
text, |
|
pattern=pattern, |
|
image_size=image_size, |
|
) |
|
else: |
|
instances = self.parse_description_with_bboxes_from_text_and_spans( |
|
text, |
|
pattern=pattern, |
|
image_size=image_size, |
|
) |
|
parsed_dict['description_with_bboxes_or_polygons'] = instances |
|
else: |
|
raise ValueError("task {} is not supported".format(task)) |
|
|
|
return parsed_dict |