Update README.md
Browse files
README.md
CHANGED
@@ -46,7 +46,190 @@ BiomedCLIP establishes new state of the art in a wide range of standard datasets
|
|
46 |
|
47 |
## Model Use
|
48 |
|
49 |
-
###
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
Please refer to this [example notebook](https://aka.ms/biomedclip-example-notebook).
|
52 |
|
|
|
46 |
|
47 |
## Model Use
|
48 |
|
49 |
+
### 1. Environment
|
50 |
+
|
51 |
+
```bash
|
52 |
+
conda create -n biomedclip python=3.10 -y
|
53 |
+
conda activate biomedclip
|
54 |
+
pip install open_clip_torch==2.23.0 transformers==4.35.2 matplotlib
|
55 |
+
```
|
56 |
+
|
57 |
+
### 2.1 Load from HF hub
|
58 |
+
|
59 |
+
```python
|
60 |
+
import torch
|
61 |
+
from urllib.request import urlopen
|
62 |
+
from PIL import Image
|
63 |
+
from open_clip import create_model_from_pretrained, get_tokenizer
|
64 |
+
|
65 |
+
# Load the model and config files from the Hugging Face Hub
|
66 |
+
model, preprocess = create_model_from_pretrained('hf-hub:microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224')
|
67 |
+
tokenizer = get_tokenizer('hf-hub:microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224')
|
68 |
+
|
69 |
+
|
70 |
+
# Zero-shot image classification
|
71 |
+
template = 'this is a photo of '
|
72 |
+
labels = [
|
73 |
+
'adenocarcinoma histopathology',
|
74 |
+
'brain MRI',
|
75 |
+
'covid line chart',
|
76 |
+
'squamous cell carcinoma histopathology',
|
77 |
+
'immunohistochemistry histopathology',
|
78 |
+
'bone X-ray',
|
79 |
+
'chest X-ray',
|
80 |
+
'pie chart',
|
81 |
+
'hematoxylin and eosin histopathology'
|
82 |
+
]
|
83 |
+
|
84 |
+
dataset_url = 'https://huggingface.co/microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224/resolve/main/example_data/biomed_image_classification_example_data/'
|
85 |
+
test_imgs = [
|
86 |
+
'squamous_cell_carcinoma_histopathology.jpeg',
|
87 |
+
'H_and_E_histopathology.jpg',
|
88 |
+
'bone_X-ray.jpg',
|
89 |
+
'adenocarcinoma_histopathology.jpg',
|
90 |
+
'covid_line_chart.png',
|
91 |
+
'IHC_histopathology.jpg',
|
92 |
+
'chest_X-ray.jpg',
|
93 |
+
'brain_MRI.jpg',
|
94 |
+
'pie_chart.png'
|
95 |
+
]
|
96 |
+
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
97 |
+
model.to(device)
|
98 |
+
model.eval()
|
99 |
+
|
100 |
+
context_length = 256
|
101 |
+
|
102 |
+
images = torch.stack([preprocess(Image.open(urlopen(dataset_url + img))) for img in test_imgs]).to(device)
|
103 |
+
texts = tokenizer([template + l for l in labels], context_length=context_length).to(device)
|
104 |
+
with torch.no_grad():
|
105 |
+
image_features, text_features, logit_scale = model(images, texts)
|
106 |
+
|
107 |
+
logits = (logit_scale * image_features @ text_features.t()).detach().softmax(dim=-1)
|
108 |
+
sorted_indices = torch.argsort(logits, dim=-1, descending=True)
|
109 |
+
|
110 |
+
logits = logits.cpu().numpy()
|
111 |
+
sorted_indices = sorted_indices.cpu().numpy()
|
112 |
+
|
113 |
+
top_k = -1
|
114 |
+
|
115 |
+
for i, img in enumerate(test_imgs):
|
116 |
+
pred = labels[sorted_indices[i][0]]
|
117 |
+
|
118 |
+
top_k = len(labels) if top_k == -1 else top_k
|
119 |
+
print(img.split('/')[-1] + ':')
|
120 |
+
for j in range(top_k):
|
121 |
+
jth_index = sorted_indices[i][j]
|
122 |
+
print(f'{labels[jth_index]}: {logits[i][jth_index]}')
|
123 |
+
print('\n')
|
124 |
+
```
|
125 |
+
|
126 |
+
### 2.2 Load from local files
|
127 |
+
|
128 |
+
```python
|
129 |
+
import json
|
130 |
+
|
131 |
+
from urllib.request import urlopen
|
132 |
+
from PIL import Image
|
133 |
+
import torch
|
134 |
+
from huggingface_hub import hf_hub_download
|
135 |
+
from open_clip import create_model_and_transforms, get_tokenizer
|
136 |
+
from open_clip.factory import HF_HUB_PREFIX, _MODEL_CONFIGS
|
137 |
+
|
138 |
+
|
139 |
+
# Download the model and config files
|
140 |
+
hf_hub_download(
|
141 |
+
repo_id="microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224",
|
142 |
+
filename="open_clip_pytorch_model.bin",
|
143 |
+
local_dir="checkpoints"
|
144 |
+
)
|
145 |
+
hf_hub_download(
|
146 |
+
repo_id="microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224",
|
147 |
+
filename="open_clip_config.json",
|
148 |
+
local_dir="checkpoints"
|
149 |
+
)
|
150 |
+
|
151 |
+
|
152 |
+
# Load the model and config files
|
153 |
+
model_name = "biomedclip_local"
|
154 |
+
|
155 |
+
with open("checkpoints/open_clip_config.json", "r") as f:
|
156 |
+
config = json.load(f)
|
157 |
+
model_cfg = config["model_cfg"]
|
158 |
+
preprocess_cfg = config["preprocess_cfg"]
|
159 |
+
|
160 |
+
|
161 |
+
if (not model_name.startswith(HF_HUB_PREFIX)
|
162 |
+
and model_name not in _MODEL_CONFIGS
|
163 |
+
and config is not None):
|
164 |
+
_MODEL_CONFIGS[model_name] = model_cfg
|
165 |
+
|
166 |
+
tokenizer = get_tokenizer(model_name)
|
167 |
+
|
168 |
+
model, _, preprocess = create_model_and_transforms(
|
169 |
+
model_name=model_name,
|
170 |
+
pretrained="checkpoints/open_clip_pytorch_model.bin",
|
171 |
+
**{f"image_{k}": v for k, v in preprocess_cfg.items()},
|
172 |
+
)
|
173 |
+
|
174 |
+
|
175 |
+
# Zero-shot image classification
|
176 |
+
template = 'this is a photo of '
|
177 |
+
labels = [
|
178 |
+
'adenocarcinoma histopathology',
|
179 |
+
'brain MRI',
|
180 |
+
'covid line chart',
|
181 |
+
'squamous cell carcinoma histopathology',
|
182 |
+
'immunohistochemistry histopathology',
|
183 |
+
'bone X-ray',
|
184 |
+
'chest X-ray',
|
185 |
+
'pie chart',
|
186 |
+
'hematoxylin and eosin histopathology'
|
187 |
+
]
|
188 |
+
|
189 |
+
dataset_url = 'https://huggingface.co/microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224/resolve/main/example_data/biomed_image_classification_example_data/'
|
190 |
+
test_imgs = [
|
191 |
+
'squamous_cell_carcinoma_histopathology.jpeg',
|
192 |
+
'H_and_E_histopathology.jpg',
|
193 |
+
'bone_X-ray.jpg',
|
194 |
+
'adenocarcinoma_histopathology.jpg',
|
195 |
+
'covid_line_chart.png',
|
196 |
+
'IHC_histopathology.jpg',
|
197 |
+
'chest_X-ray.jpg',
|
198 |
+
'brain_MRI.jpg',
|
199 |
+
'pie_chart.png'
|
200 |
+
]
|
201 |
+
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
202 |
+
model.to(device)
|
203 |
+
model.eval()
|
204 |
+
|
205 |
+
context_length = 256
|
206 |
+
|
207 |
+
images = torch.stack([preprocess(Image.open(urlopen(dataset_url + img))) for img in test_imgs]).to(device)
|
208 |
+
texts = tokenizer([template + l for l in labels], context_length=context_length).to(device)
|
209 |
+
with torch.no_grad():
|
210 |
+
image_features, text_features, logit_scale = model(images, texts)
|
211 |
+
|
212 |
+
logits = (logit_scale * image_features @ text_features.t()).detach().softmax(dim=-1)
|
213 |
+
sorted_indices = torch.argsort(logits, dim=-1, descending=True)
|
214 |
+
|
215 |
+
logits = logits.cpu().numpy()
|
216 |
+
sorted_indices = sorted_indices.cpu().numpy()
|
217 |
+
|
218 |
+
top_k = -1
|
219 |
+
|
220 |
+
for i, img in enumerate(test_imgs):
|
221 |
+
pred = labels[sorted_indices[i][0]]
|
222 |
+
|
223 |
+
top_k = len(labels) if top_k == -1 else top_k
|
224 |
+
print(img.split('/')[-1] + ':')
|
225 |
+
for j in range(top_k):
|
226 |
+
jth_index = sorted_indices[i][j]
|
227 |
+
print(f'{labels[jth_index]}: {logits[i][jth_index]}')
|
228 |
+
print('\n')
|
229 |
+
|
230 |
+
```
|
231 |
+
|
232 |
+
### Use in Jupyter Notebook
|
233 |
|
234 |
Please refer to this [example notebook](https://aka.ms/biomedclip-example-notebook).
|
235 |
|