End of training
Browse files
README.md
CHANGED
@@ -1,199 +1,98 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
-
|
34 |
-
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: facebook/w2v-bert-2.0
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- wer
|
9 |
+
model-index:
|
10 |
+
- name: w2v-bert-2.0-15red
|
11 |
+
results: []
|
12 |
---
|
13 |
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# w2v-bert-2.0-15red
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.2430
|
22 |
+
- Wer: 0.1037
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 5e-05
|
42 |
+
- train_batch_size: 8
|
43 |
+
- eval_batch_size: 8
|
44 |
+
- seed: 42
|
45 |
+
- gradient_accumulation_steps: 4
|
46 |
+
- total_train_batch_size: 32
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- lr_scheduler_warmup_steps: 500
|
50 |
+
- training_steps: 17000
|
51 |
+
- mixed_precision_training: Native AMP
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
56 |
+
|:-------------:|:-------:|:-----:|:---------------:|:------:|
|
57 |
+
| 0.6691 | 0.4261 | 500 | 0.6233 | 0.5383 |
|
58 |
+
| 0.45 | 0.8522 | 1000 | 0.4130 | 0.3675 |
|
59 |
+
| 0.3758 | 1.2782 | 1500 | 0.3631 | 0.3105 |
|
60 |
+
| 0.2521 | 1.7043 | 2000 | 0.3245 | 0.2777 |
|
61 |
+
| 0.2897 | 2.1304 | 2500 | 0.3024 | 0.2466 |
|
62 |
+
| 0.23 | 2.5565 | 3000 | 0.2813 | 0.2389 |
|
63 |
+
| 0.2937 | 2.9825 | 3500 | 0.2713 | 0.2236 |
|
64 |
+
| 0.1833 | 3.4086 | 4000 | 0.2600 | 0.2055 |
|
65 |
+
| 0.1375 | 3.8347 | 4500 | 0.2424 | 0.1910 |
|
66 |
+
| 0.2097 | 4.2608 | 5000 | 0.2376 | 0.1856 |
|
67 |
+
| 0.1676 | 4.6868 | 5500 | 0.2304 | 0.1839 |
|
68 |
+
| 0.1268 | 5.1129 | 6000 | 0.2328 | 0.1687 |
|
69 |
+
| 0.1229 | 5.5390 | 6500 | 0.2274 | 0.1646 |
|
70 |
+
| 0.1116 | 5.9651 | 7000 | 0.2103 | 0.1562 |
|
71 |
+
| 0.2322 | 6.3911 | 7500 | 0.2080 | 0.1540 |
|
72 |
+
| 0.1592 | 6.8172 | 8000 | 0.2151 | 0.1496 |
|
73 |
+
| 0.0796 | 7.2433 | 8500 | 0.2065 | 0.1401 |
|
74 |
+
| 0.0774 | 7.6694 | 9000 | 0.2036 | 0.1373 |
|
75 |
+
| 0.0979 | 8.0954 | 9500 | 0.2109 | 0.1361 |
|
76 |
+
| 0.0916 | 8.5215 | 10000 | 0.2082 | 0.1320 |
|
77 |
+
| 0.1057 | 8.9476 | 10500 | 0.2080 | 0.1294 |
|
78 |
+
| 0.0642 | 9.3737 | 11000 | 0.2032 | 0.1245 |
|
79 |
+
| 0.0585 | 9.7997 | 11500 | 0.1974 | 0.1232 |
|
80 |
+
| 0.0531 | 10.2258 | 12000 | 0.2108 | 0.1203 |
|
81 |
+
| 0.049 | 10.6519 | 12500 | 0.2027 | 0.1155 |
|
82 |
+
| 0.0431 | 11.0780 | 13000 | 0.2065 | 0.1152 |
|
83 |
+
| 0.0454 | 11.5040 | 13500 | 0.2167 | 0.1122 |
|
84 |
+
| 0.0236 | 11.9301 | 14000 | 0.2195 | 0.1113 |
|
85 |
+
| 0.0313 | 12.3562 | 14500 | 0.2314 | 0.1080 |
|
86 |
+
| 0.0452 | 12.7823 | 15000 | 0.2231 | 0.1063 |
|
87 |
+
| 0.0159 | 13.2084 | 15500 | 0.2259 | 0.1057 |
|
88 |
+
| 0.0166 | 13.6344 | 16000 | 0.2355 | 0.1043 |
|
89 |
+
| 0.0175 | 14.0605 | 16500 | 0.2340 | 0.1040 |
|
90 |
+
| 0.0169 | 14.4866 | 17000 | 0.2430 | 0.1037 |
|
91 |
+
|
92 |
+
|
93 |
+
### Framework versions
|
94 |
+
|
95 |
+
- Transformers 4.44.2
|
96 |
+
- Pytorch 2.4.1+cu124
|
97 |
+
- Datasets 2.20.0
|
98 |
+
- Tokenizers 0.19.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|