Upload 2 files
Browse files- modeling_functionary.py +109 -0
- tokenization_functionary.py +520 -0
modeling_functionary.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright (c) 2024, MeetKai Inc. All rights reserved.
|
3 |
+
"""PyTorch LLaMA model."""
|
4 |
+
|
5 |
+
import json
|
6 |
+
from typing import TYPE_CHECKING, Callable, List, Optional, Tuple, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.utils.checkpoint
|
10 |
+
|
11 |
+
from transformers.generation.configuration_utils import GenerationConfig
|
12 |
+
from transformers.generation.logits_process import LogitsProcessorList
|
13 |
+
from transformers.generation.stopping_criteria import StoppingCriteriaList
|
14 |
+
from transformers.generation.utils import (
|
15 |
+
GenerateBeamDecoderOnlyOutput,
|
16 |
+
GenerateBeamEncoderDecoderOutput,
|
17 |
+
GenerateDecoderOnlyOutput,
|
18 |
+
GenerateEncoderDecoderOutput
|
19 |
+
)
|
20 |
+
from transformers.models.llama.modeling_llama import LlamaForCausalLM
|
21 |
+
from transformers.utils import logging
|
22 |
+
|
23 |
+
|
24 |
+
if TYPE_CHECKING:
|
25 |
+
from transformers.modeling_utils import PreTrainedModel
|
26 |
+
from transformers.generation.streamers import BaseStreamer
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
GenerateNonBeamOutput = Union[GenerateDecoderOnlyOutput, GenerateEncoderDecoderOutput]
|
31 |
+
GenerateBeamOutput = Union[GenerateBeamDecoderOnlyOutput, GenerateBeamEncoderDecoderOutput]
|
32 |
+
GenerateOutput = Union[GenerateNonBeamOutput, GenerateBeamOutput]
|
33 |
+
|
34 |
+
|
35 |
+
class FunctionaryForCausalLM(LlamaForCausalLM):
|
36 |
+
|
37 |
+
def generate_tool_use(
|
38 |
+
self,
|
39 |
+
inputs: Optional[torch.Tensor] = None,
|
40 |
+
generation_config: Optional[GenerationConfig] = None,
|
41 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
42 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
43 |
+
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
44 |
+
synced_gpus: Optional[bool] = None,
|
45 |
+
assistant_model: Optional["PreTrainedModel"] = None,
|
46 |
+
streamer: Optional["BaseStreamer"] = None,
|
47 |
+
negative_prompt_ids: Optional[torch.Tensor] = None,
|
48 |
+
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
49 |
+
**kwargs,
|
50 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
51 |
+
|
52 |
+
tokenizer = kwargs.pop("tokenizer", None) # Pull this out first, we use it to parse raw output
|
53 |
+
|
54 |
+
results = self.generate(
|
55 |
+
inputs=inputs,
|
56 |
+
generation_config=generation_config,
|
57 |
+
logits_processor=logits_processor,
|
58 |
+
stopping_criteria=stopping_criteria,
|
59 |
+
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
60 |
+
synced_gpus=synced_gpus,
|
61 |
+
assistant_model=assistant_model,
|
62 |
+
streamer=streamer,
|
63 |
+
negative_prompt_ids=negative_prompt_ids,
|
64 |
+
negative_prompt_attention_mask=negative_prompt_attention_mask,
|
65 |
+
**kwargs,
|
66 |
+
)
|
67 |
+
|
68 |
+
input_ids = kwargs.pop("input_ids")
|
69 |
+
function_call_token = "<|reserved_special_token_249|>"
|
70 |
+
|
71 |
+
correct_results = []
|
72 |
+
for input_id, result in zip(input_ids, results):
|
73 |
+
final_output_json = {"role": "assistant", "content": None, "tool_calls": None}
|
74 |
+
tool_calls = []
|
75 |
+
raw_output_str = tokenizer.decode(result[len(input_id):].cpu())
|
76 |
+
has_text = False if raw_output_str.startswith(function_call_token) else True
|
77 |
+
chunks = raw_output_str.split(function_call_token)
|
78 |
+
for i, chunk in enumerate(chunks):
|
79 |
+
if len(chunk) == 0:
|
80 |
+
continue
|
81 |
+
|
82 |
+
chunk = chunk.replace(tokenizer.pad_token, "")
|
83 |
+
if i == 0 and has_text is not False:
|
84 |
+
final_output_json["content"] = chunk.strip[:-len("<|eot_id|>")] if chunk.endswith("<|eot_id|>") else chunk
|
85 |
+
else:
|
86 |
+
tool_calls.append(
|
87 |
+
{
|
88 |
+
"name": chunk[: chunk.index("\n{")],
|
89 |
+
"arguments": chunk[chunk.index("\n{") + 1: -len("<|eot_id|>")] if chunk.endswith("<|eot_id|>") else chunk[chunk.index("\n{") + 1:]
|
90 |
+
}
|
91 |
+
)
|
92 |
+
if len(tool_calls) > 0:
|
93 |
+
final_output_json["tool_calls"] = tool_calls
|
94 |
+
final_output_str = json.dumps(final_output_json, indent=4)
|
95 |
+
final_output_ids = tokenizer(final_output_str, add_special_tokens=False)["input_ids"]
|
96 |
+
correct_results.append(
|
97 |
+
torch.cat(
|
98 |
+
(result[:len(input_id)].cpu(), torch.tensor(final_output_ids))
|
99 |
+
)
|
100 |
+
)
|
101 |
+
max_len = max([tensor.shape[0] for tensor in correct_results])
|
102 |
+
correct_results = [
|
103 |
+
torch.nn.functional.pad(
|
104 |
+
correct_result, (0, max_len - correct_result.shape[0]), value=tokenizer.eos_token_id
|
105 |
+
) for correct_result in correct_results
|
106 |
+
]
|
107 |
+
correct_results = torch.stack(correct_results)
|
108 |
+
|
109 |
+
return correct_results
|
tokenization_functionary.py
ADDED
@@ -0,0 +1,520 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024, MeetKai Inc. All rights reserved.
|
2 |
+
|
3 |
+
from copy import deepcopy
|
4 |
+
import json
|
5 |
+
from typing import Any, Dict, List, Literal, Optional, Union
|
6 |
+
|
7 |
+
import jsonref
|
8 |
+
from pydantic import BaseModel, Field, model_validator
|
9 |
+
from typing_extensions import Self
|
10 |
+
|
11 |
+
from transformers.tokenization_utils_base import BatchEncoding
|
12 |
+
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
13 |
+
from transformers.utils import TensorType, logging
|
14 |
+
|
15 |
+
|
16 |
+
logger = logging.get_logger(__name__)
|
17 |
+
SYSTEM_PROMPT = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. The assistant calls functions with appropriate input when necessary"""
|
18 |
+
CODE_INTERPRETER_SYSTEM_PROMPT = """When you send a message containing Python code to python, it will be executed in a stateful Jupyter notebook environment. python will respond with the output of the execution or time out after 60.0 seconds. The drive at '/mnt/data' can be used to save and persist user files."""
|
19 |
+
|
20 |
+
class Function(BaseModel):
|
21 |
+
name: str
|
22 |
+
description: Optional[str] = Field(default="")
|
23 |
+
parameters: Optional[dict] = None
|
24 |
+
|
25 |
+
|
26 |
+
class Tool(BaseModel):
|
27 |
+
type: Literal["function", "code_interpreter"]
|
28 |
+
function: Optional[Function] = None
|
29 |
+
|
30 |
+
@model_validator(mode="after")
|
31 |
+
def check_type_function_matches(self) -> Self:
|
32 |
+
if self.type == "function":
|
33 |
+
assert self.function is not None, '"function" must contain function description when `"type": "function"`'
|
34 |
+
else:
|
35 |
+
assert self.function is None, '"function" must not be provided when `"type": "code_interpreter"`'
|
36 |
+
return self
|
37 |
+
|
38 |
+
|
39 |
+
def convert_data_type(param_type: str) -> str:
|
40 |
+
"""convert data_type to typescript data type
|
41 |
+
|
42 |
+
Args:
|
43 |
+
param_type (str): param_type
|
44 |
+
|
45 |
+
Returns:
|
46 |
+
str: param type in typescript
|
47 |
+
"""
|
48 |
+
if param_type == "integer" or param_type == "float":
|
49 |
+
return "number"
|
50 |
+
return param_type
|
51 |
+
|
52 |
+
|
53 |
+
def get_param_type(param: Dict) -> str:
|
54 |
+
"""get param_type of parameter
|
55 |
+
|
56 |
+
Args:
|
57 |
+
param (Dict): param dict in properties
|
58 |
+
|
59 |
+
Returns:
|
60 |
+
str: _description_
|
61 |
+
"""
|
62 |
+
param_type = "any"
|
63 |
+
if "type" in param:
|
64 |
+
raw_param_type = param["type"]
|
65 |
+
if type(raw_param_type) is list:
|
66 |
+
param_type = " | ".join(raw_param_type)
|
67 |
+
else:
|
68 |
+
param_type = raw_param_type
|
69 |
+
|
70 |
+
else: # in many cases, the json schema contains: oneOf instead of "type"
|
71 |
+
if "oneOf" in param:
|
72 |
+
one_of_types = []
|
73 |
+
for item in param["oneOf"]:
|
74 |
+
if "type" in item:
|
75 |
+
one_of_types.append(convert_data_type(item["type"]))
|
76 |
+
one_of_types = list(set(one_of_types))
|
77 |
+
param_type = " | ".join(one_of_types)
|
78 |
+
return convert_data_type(param_type)
|
79 |
+
|
80 |
+
|
81 |
+
def get_format_param(param: Dict) -> Optional[str]:
|
82 |
+
"""Get "format" from param. There are cases where format is not directly in param but in oneOf
|
83 |
+
|
84 |
+
Args:
|
85 |
+
param (Dict): _description_
|
86 |
+
|
87 |
+
Returns:
|
88 |
+
Optional[str]: _description_
|
89 |
+
"""
|
90 |
+
if "format" in param:
|
91 |
+
return param["format"]
|
92 |
+
if "oneOf" in param:
|
93 |
+
formats = []
|
94 |
+
for item in param["oneOf"]:
|
95 |
+
if "format" in item:
|
96 |
+
formats.append(item["format"])
|
97 |
+
if len(formats) > 0:
|
98 |
+
return " or ".join(formats)
|
99 |
+
return None
|
100 |
+
|
101 |
+
|
102 |
+
def get_param_info(param: Dict) -> Optional[str]:
|
103 |
+
"""get additional information about parameter such as: format, default value, min, max, ...
|
104 |
+
|
105 |
+
Args:
|
106 |
+
param (Dict): _description_
|
107 |
+
|
108 |
+
Returns:
|
109 |
+
Optional[str]: _description_
|
110 |
+
"""
|
111 |
+
param_type = param.get("type", "any")
|
112 |
+
info_list = []
|
113 |
+
if "description" in param:
|
114 |
+
desc = param["description"]
|
115 |
+
if not desc.endswith("."):
|
116 |
+
desc += "."
|
117 |
+
info_list.append(desc)
|
118 |
+
|
119 |
+
if "default" in param:
|
120 |
+
default_value = param["default"]
|
121 |
+
if param_type == "string":
|
122 |
+
default_value = f'"{default_value}"' # if string --> add ""
|
123 |
+
info_list.append(f"Default={default_value}.")
|
124 |
+
|
125 |
+
format_param = get_format_param(param)
|
126 |
+
if format_param is not None:
|
127 |
+
info_list.append("Format=" + format_param)
|
128 |
+
|
129 |
+
for field, field_name in [
|
130 |
+
("maximum", "Maximum"),
|
131 |
+
("minimum", "Minimum"),
|
132 |
+
("maxLength", "Maximum length"),
|
133 |
+
("minLength", "Minimum length"),
|
134 |
+
]:
|
135 |
+
if field in param:
|
136 |
+
info_list.append(f"{field_name}=" + str(param[field]))
|
137 |
+
|
138 |
+
if len(info_list) > 0:
|
139 |
+
result = "// " + " ".join(info_list)
|
140 |
+
result = result.replace("\n", " ")
|
141 |
+
return result
|
142 |
+
return None
|
143 |
+
|
144 |
+
|
145 |
+
def append_new_param_info(
|
146 |
+
info_list: List[str],
|
147 |
+
param_declaration: str,
|
148 |
+
comment_info: Optional[str],
|
149 |
+
examples_info: List,
|
150 |
+
depth: int,
|
151 |
+
):
|
152 |
+
"""Append a new parameter with comment to the info_list
|
153 |
+
|
154 |
+
Args:
|
155 |
+
info_lines (List[str]): current info_list
|
156 |
+
param_declaration (str): param: type
|
157 |
+
comment_info (Optional[str]): information of comment
|
158 |
+
examples_info (List): information of examples given
|
159 |
+
depth (int): level of nested param
|
160 |
+
"""
|
161 |
+
offset = ""
|
162 |
+
if depth >= 1:
|
163 |
+
offset = "".join([" " for _ in range(depth)])
|
164 |
+
if comment_info is not None:
|
165 |
+
# if depth == 0: # format: //comment\nparam: type
|
166 |
+
info_list.append(f"{offset}{comment_info}")
|
167 |
+
if len(examples_info) > 0:
|
168 |
+
for example in examples_info:
|
169 |
+
info_list.append(f"{offset}{example}")
|
170 |
+
info_list.append(f"{offset}{param_declaration}")
|
171 |
+
# else: # format: param: type // comment
|
172 |
+
# info_list.append(f"{offset}{param_declaration} {comment_info}")
|
173 |
+
else:
|
174 |
+
info_list.append(f"{offset}{param_declaration}")
|
175 |
+
|
176 |
+
|
177 |
+
def get_examples_info(param_name: str, examples: List) -> List:
|
178 |
+
"""get information about examples provided
|
179 |
+
|
180 |
+
Args:
|
181 |
+
param_name (str): _description_
|
182 |
+
examples (List): _description_
|
183 |
+
|
184 |
+
Returns:
|
185 |
+
List: _description_
|
186 |
+
"""
|
187 |
+
examples_list = [f"// Example {param_name}:"]
|
188 |
+
for example in examples:
|
189 |
+
if isinstance(example, dict) or isinstance(example, list):
|
190 |
+
example_str = json.dumps(example, ensure_ascii=False).replace('\n', '\\n')
|
191 |
+
else:
|
192 |
+
example_str = str(example).replace('\n', '\\n')
|
193 |
+
examples_list.append(f"// {example_str}")
|
194 |
+
|
195 |
+
return examples_list
|
196 |
+
|
197 |
+
|
198 |
+
def get_enum_option_str(enum_options: List) -> str:
|
199 |
+
"""get enum option separated by: "|"
|
200 |
+
|
201 |
+
Args:
|
202 |
+
enum_options (List): list of options
|
203 |
+
|
204 |
+
Returns:
|
205 |
+
_type_: concatenation of options separated by "|"
|
206 |
+
"""
|
207 |
+
# if each option is string --> add quote
|
208 |
+
return " | ".join([f'"{v}"' if type(v) is str else str(v) for v in enum_options])
|
209 |
+
|
210 |
+
|
211 |
+
def get_array_typescript(
|
212 |
+
param_name: Optional[str], param_dic: dict, depth: int = 0
|
213 |
+
) -> str:
|
214 |
+
"""recursive implementation for generating type script of array
|
215 |
+
|
216 |
+
Args:
|
217 |
+
param_name (Optional[str]): name of param, optional
|
218 |
+
param_dic (dict): param_dic
|
219 |
+
depth (int, optional): nested level. Defaults to 0.
|
220 |
+
|
221 |
+
Returns:
|
222 |
+
_type_: typescript of array
|
223 |
+
"""
|
224 |
+
offset = ""
|
225 |
+
if depth >= 1:
|
226 |
+
offset = "".join([" " for _ in range(depth)])
|
227 |
+
items_info = param_dic.get("items", {})
|
228 |
+
|
229 |
+
if len(items_info) == 0:
|
230 |
+
if param_name is not None:
|
231 |
+
return f"{offset}{param_name}: []"
|
232 |
+
else:
|
233 |
+
return "[]"
|
234 |
+
array_type = get_param_type(items_info)
|
235 |
+
if array_type == "object":
|
236 |
+
info_lines = []
|
237 |
+
child_lines = get_parameter_typescript(
|
238 |
+
items_info.get("properties", {}), items_info.get("required", []), depth + 1
|
239 |
+
)
|
240 |
+
# if comment_info is not None:
|
241 |
+
# info_lines.append(f"{offset}{comment_info}")
|
242 |
+
if param_name is not None:
|
243 |
+
info_lines.append(f"{offset}{param_name}" + ": {")
|
244 |
+
else:
|
245 |
+
info_lines.append(f"{offset}" + "{")
|
246 |
+
info_lines.extend(child_lines)
|
247 |
+
info_lines.append(f"{offset}" + "}[]")
|
248 |
+
return "\n".join(info_lines)
|
249 |
+
|
250 |
+
elif array_type == "array":
|
251 |
+
item_info = get_array_typescript(None, items_info, depth + 1)
|
252 |
+
if param_name is None:
|
253 |
+
return f"{item_info}[]"
|
254 |
+
return f"{offset}{param_name}: {item_info.strip()}[]"
|
255 |
+
|
256 |
+
else:
|
257 |
+
if "enum" in items_info:
|
258 |
+
item_type = get_enum_option_str(items_info["enum"])
|
259 |
+
if param_name is None:
|
260 |
+
return f"({item_type})[]"
|
261 |
+
else:
|
262 |
+
return f"{offset}{param_name}: ({item_type})[]"
|
263 |
+
else:
|
264 |
+
if param_name is None:
|
265 |
+
return f"{array_type}[]"
|
266 |
+
else:
|
267 |
+
return f"{offset}{param_name}: {array_type}[],"
|
268 |
+
|
269 |
+
|
270 |
+
def get_parameter_typescript(properties, required_params, depth=0) -> List[str]:
|
271 |
+
"""Recursion, returning the information about parameters including data type, description and other information
|
272 |
+
These kinds of information will be put into the prompt
|
273 |
+
|
274 |
+
Args:
|
275 |
+
properties (_type_): properties in parameters
|
276 |
+
required_params (_type_): List of required parameters
|
277 |
+
depth (int, optional): the depth of params (nested level). Defaults to 0.
|
278 |
+
|
279 |
+
Returns:
|
280 |
+
_type_: list of lines containing information about all parameters
|
281 |
+
"""
|
282 |
+
tp_lines = []
|
283 |
+
for param_name, param in properties.items():
|
284 |
+
# Sometimes properties have "required" field as a list of string.
|
285 |
+
# Even though its supposed to be not under properties. So we skip it
|
286 |
+
if not isinstance(param, dict):
|
287 |
+
continue
|
288 |
+
# Param Description
|
289 |
+
comment_info = get_param_info(param)
|
290 |
+
# Param Examples
|
291 |
+
examples_info = []
|
292 |
+
if "examples" in param:
|
293 |
+
examples_info = get_examples_info(param_name, param["examples"])
|
294 |
+
# Param Name declaration
|
295 |
+
param_declaration = f"{param_name}"
|
296 |
+
if isinstance(required_params, list):
|
297 |
+
if param_name not in required_params:
|
298 |
+
param_declaration += "?"
|
299 |
+
param_type = get_param_type(param)
|
300 |
+
|
301 |
+
offset = ""
|
302 |
+
if depth >= 1:
|
303 |
+
offset = "".join([" " for _ in range(depth)])
|
304 |
+
|
305 |
+
if param_type == "object": # param_type is object
|
306 |
+
child_lines = get_parameter_typescript(
|
307 |
+
param.get("properties", {}), param.get("required", []), depth + 1
|
308 |
+
)
|
309 |
+
if comment_info is not None:
|
310 |
+
tp_lines.append(f"{offset}{comment_info}")
|
311 |
+
if len(examples_info) > 0:
|
312 |
+
for example in examples_info:
|
313 |
+
tp_lines.append(f"{offset}{example}")
|
314 |
+
|
315 |
+
param_declaration += ": {"
|
316 |
+
tp_lines.append(f"{offset}{param_declaration}")
|
317 |
+
tp_lines.extend(child_lines)
|
318 |
+
tp_lines.append(f"{offset}" + "},")
|
319 |
+
|
320 |
+
elif param_type == "array": # param_type is an array
|
321 |
+
item_info = param.get("items", {})
|
322 |
+
if "type" not in item_info: # don't know type of array
|
323 |
+
param_declaration += ": [],"
|
324 |
+
append_new_param_info(
|
325 |
+
tp_lines, param_declaration, comment_info, examples_info, depth
|
326 |
+
)
|
327 |
+
else:
|
328 |
+
array_declaration = get_array_typescript(
|
329 |
+
param_declaration, param, depth
|
330 |
+
)
|
331 |
+
if not array_declaration.endswith(","):
|
332 |
+
array_declaration += ","
|
333 |
+
if comment_info is not None:
|
334 |
+
tp_lines.append(f"{offset}{comment_info}")
|
335 |
+
if len(examples_info) > 0:
|
336 |
+
for example in examples_info:
|
337 |
+
tp_lines.append(f"{offset}{example}")
|
338 |
+
tp_lines.append(array_declaration)
|
339 |
+
else:
|
340 |
+
if "enum" in param:
|
341 |
+
param_type = get_enum_option_str(param["enum"])
|
342 |
+
# param_type = " | ".join([f'"{v}"' for v in param["enum"]])
|
343 |
+
if "nullable" in param and param["nullable"] is True:
|
344 |
+
param_type += " | null"
|
345 |
+
param_declaration += f": {param_type},"
|
346 |
+
append_new_param_info(
|
347 |
+
tp_lines, param_declaration, comment_info, examples_info, depth
|
348 |
+
)
|
349 |
+
|
350 |
+
return tp_lines
|
351 |
+
|
352 |
+
def generate_schema_from_functions(
|
353 |
+
functions: List[Function], namespace="functions"
|
354 |
+
) -> str:
|
355 |
+
"""
|
356 |
+
Convert functions schema to a schema that language models can understand.
|
357 |
+
"""
|
358 |
+
|
359 |
+
schema = "// Supported function definitions that should be called when necessary.\n"
|
360 |
+
schema += f"namespace {namespace} {{\n\n"
|
361 |
+
|
362 |
+
for function in functions:
|
363 |
+
# Convert a Function object to dict, if necessary
|
364 |
+
if not isinstance(function, dict):
|
365 |
+
function = function.model_dump()
|
366 |
+
function_name = function.get("name", None)
|
367 |
+
if function_name is None:
|
368 |
+
continue
|
369 |
+
|
370 |
+
description = function.get("description", "")
|
371 |
+
schema += f"// {description}\n"
|
372 |
+
schema += f"type {function_name}"
|
373 |
+
|
374 |
+
parameters = function.get("parameters", None)
|
375 |
+
if parameters is not None and parameters.get("properties") is not None:
|
376 |
+
parameters = deepcopy(jsonref.JsonRef.replace_refs(parameters))
|
377 |
+
schema += " = (_: {\n"
|
378 |
+
required_params = parameters.get("required", [])
|
379 |
+
tp_lines = get_parameter_typescript(
|
380 |
+
parameters.get("properties"),
|
381 |
+
required_params,
|
382 |
+
0,
|
383 |
+
)
|
384 |
+
schema += "\n".join(tp_lines)
|
385 |
+
schema += "\n}) => any;\n\n"
|
386 |
+
else:
|
387 |
+
# Doesn't have any parameters
|
388 |
+
schema += " = () => any;\n\n"
|
389 |
+
|
390 |
+
schema += f"}} // namespace {namespace}"
|
391 |
+
|
392 |
+
return schema
|
393 |
+
|
394 |
+
class FunctionaryTokenizer(PreTrainedTokenizerFast):
|
395 |
+
def apply_chat_template(
|
396 |
+
self,
|
397 |
+
conversation: Union[List[Dict[str, str]], List[List[Dict[str, str]]], str],
|
398 |
+
tools: Optional[List[Dict[str, Any]]],
|
399 |
+
chat_template: Optional[str] = None,
|
400 |
+
add_generation_prompt: bool = False,
|
401 |
+
tokenize: bool = True,
|
402 |
+
padding: bool = False,
|
403 |
+
truncation: bool = False,
|
404 |
+
max_length: Optional[int] = None,
|
405 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
406 |
+
return_dict: bool = False,
|
407 |
+
tokenizer_kwargs: Optional[Dict[str, Any]] = None,
|
408 |
+
**kwargs,
|
409 |
+
) -> Union[str, List[int], List[str], List[List[int]], BatchEncoding]:
|
410 |
+
|
411 |
+
if return_dict and not tokenize:
|
412 |
+
raise ValueError(
|
413 |
+
"`return_dict=True` is incompatible with `tokenize=False`, because there is no dict "
|
414 |
+
"of tokenizer outputs to return."
|
415 |
+
)
|
416 |
+
|
417 |
+
if tokenizer_kwargs is None:
|
418 |
+
tokenizer_kwargs = {}
|
419 |
+
|
420 |
+
using_default_template = False
|
421 |
+
|
422 |
+
# First, handle the cases when the model has a dict of multiple templates
|
423 |
+
if isinstance(self.chat_template, dict) or (
|
424 |
+
self.chat_template is None and isinstance(self.default_chat_template, dict)
|
425 |
+
):
|
426 |
+
if self.chat_template is not None:
|
427 |
+
template_dict = self.chat_template
|
428 |
+
using_default_dict = False
|
429 |
+
else:
|
430 |
+
template_dict = self.default_chat_template
|
431 |
+
using_default_dict = True
|
432 |
+
if chat_template is not None and chat_template in template_dict:
|
433 |
+
# The user can pass the name of a template to the chat template argument instead of an entire template
|
434 |
+
chat_template = template_dict[chat_template]
|
435 |
+
if using_default_dict:
|
436 |
+
using_default_template = True
|
437 |
+
elif chat_template is None and "default" in template_dict:
|
438 |
+
chat_template = template_dict["default"]
|
439 |
+
if using_default_dict:
|
440 |
+
using_default_template = True
|
441 |
+
elif chat_template is None:
|
442 |
+
raise ValueError(
|
443 |
+
"This model has multiple chat templates with no default specified! Please either pass a chat "
|
444 |
+
"template or the name of the template you wish to use to the `chat_template` argument. Available "
|
445 |
+
f"template names are {sorted(template_dict.keys())}."
|
446 |
+
)
|
447 |
+
elif chat_template is None:
|
448 |
+
# These are the cases when the model has a single template
|
449 |
+
# priority: `chat_template` argument > `tokenizer.chat_template` > `tokenizer.default_chat_template
|
450 |
+
if self.chat_template is not None:
|
451 |
+
chat_template = self.chat_template
|
452 |
+
else:
|
453 |
+
chat_template = self.default_chat_template
|
454 |
+
using_default_template = True
|
455 |
+
|
456 |
+
if using_default_template:
|
457 |
+
logger.warning_once(
|
458 |
+
"No chat template is set for this tokenizer, falling back to a default class-level template. This is "
|
459 |
+
"very error-prone, because models are often trained with templates different from the class default! "
|
460 |
+
"Default chat templates are a legacy feature and will be removed in Transformers v4.43, at which "
|
461 |
+
"point any code depending on them will stop working. We recommend setting a valid chat template before "
|
462 |
+
"then to ensure that this model continues working without issues."
|
463 |
+
)
|
464 |
+
|
465 |
+
# Prepare tools/functions into schema
|
466 |
+
functions_pydantic_to_render = []
|
467 |
+
has_code_interpreter = False
|
468 |
+
for i in range(len(tools)):
|
469 |
+
tool_pydantic = Tool.model_validate(tools[i])
|
470 |
+
if tool_pydantic.type == "function":
|
471 |
+
functions_pydantic_to_render.append(tool_pydantic.function)
|
472 |
+
else:
|
473 |
+
has_code_interpreter = True
|
474 |
+
conversation.insert(0, {"role": "system", "content": generate_schema_from_functions(functions_pydantic_to_render)})
|
475 |
+
# Insert system prompt
|
476 |
+
system_prompt_to_use = SYSTEM_PROMPT if not has_code_interpreter else CODE_INTERPRETER_SYSTEM_PROMPT
|
477 |
+
conversation.insert(1, {"role": "system", "content": system_prompt_to_use})
|
478 |
+
|
479 |
+
# Compilation function uses a cache to avoid recompiling the same template
|
480 |
+
compiled_template = self._compile_jinja_template(chat_template)
|
481 |
+
|
482 |
+
if isinstance(conversation, (list, tuple)) and (
|
483 |
+
isinstance(conversation[0], (list, tuple)) or hasattr(conversation[0], "messages")
|
484 |
+
):
|
485 |
+
conversations = conversation
|
486 |
+
is_batched = True
|
487 |
+
else:
|
488 |
+
conversations = [conversation]
|
489 |
+
is_batched = False
|
490 |
+
|
491 |
+
rendered = []
|
492 |
+
template_kwargs = {**self.special_tokens_map, **kwargs} # kwargs overwrite special tokens if both are present
|
493 |
+
for chat in conversations:
|
494 |
+
if hasattr(chat, "messages"):
|
495 |
+
# Indicates it's a Conversation object
|
496 |
+
chat = chat.messages
|
497 |
+
rendered_chat = compiled_template.render(
|
498 |
+
messages=chat, add_generation_prompt=add_generation_prompt, **template_kwargs
|
499 |
+
)
|
500 |
+
rendered.append(rendered_chat)
|
501 |
+
|
502 |
+
if not is_batched:
|
503 |
+
rendered = rendered[0]
|
504 |
+
|
505 |
+
if tokenize:
|
506 |
+
out = self(
|
507 |
+
rendered,
|
508 |
+
padding=padding,
|
509 |
+
truncation=truncation,
|
510 |
+
max_length=max_length,
|
511 |
+
add_special_tokens=False,
|
512 |
+
return_tensors=return_tensors,
|
513 |
+
**tokenizer_kwargs,
|
514 |
+
)
|
515 |
+
if return_dict:
|
516 |
+
return out
|
517 |
+
else:
|
518 |
+
return out["input_ids"]
|
519 |
+
else:
|
520 |
+
return rendered
|