--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - dataset_whisper metrics: - wer model-index: - name: Transcriber-Medium results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: dataset_whisper type: dataset_whisper config: default split: test args: default metrics: - name: Wer type: wer value: 108.52032520325203 --- # Transcriber-Medium This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the dataset_whisper dataset. It achieves the following results on the evaluation set: - Loss: 2.9360 - Wer: 108.5203 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7536 | 4.02 | 100 | 2.9360 | 108.5203 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.14.1 - Tokenizers 0.13.3