segformer_b2_clothes / handler.py
mattmdjaga's picture
Added custom handler
04de101
raw
history blame
1.54 kB
from typing import Dict, List, Any
from PIL import Image
from io import BytesIO
from transformers import AutoModelForSemanticSegmentation, AutoFeatureExtractor
import base64
import torch
from torch import nn
class EndpointHandler():
def __init__(self, path="."):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model = AutoModelForSemanticSegmentation.from_pretrained(path).to(self.device).eval()
self.feature_extractor = AutoFeatureExtractor.from_pretrained(path)
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
data args:
images (:obj:`PIL.Image`)
candiates (:obj:`list`)
Return:
A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82}
"""
inputs = data.pop("inputs", data)
# decode base64 image to PIL
image = Image.open(BytesIO(base64.b64decode(inputs['image'])))
# preprocess image
encoding = self.feature_extractor(images=image, return_tensors="pt")
pixel_values = encoding["pixel_values"].to(self.device)
with torch.no_grad():
outputs = self.model(pixel_values=pixel_values)
logits = outputs.logits
upsampled_logits = nn.functional.interpolate(logits,
size=image.size[::-1],
mode="bilinear",
align_corners=False,)
pred_seg = upsampled_logits.argmax(dim=1)[0]
return pred_seg.tolist()