marccgrau commited on
Commit
2f85122
1 Parent(s): 1d694a8

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - ge
4
+ license: apache-2.0
5
+ tags:
6
+ - sbb-asr
7
+ - generated_from_trainer
8
+ datasets:
9
+ - marccgrau/sbbdata
10
+ metrics:
11
+ - wer
12
+ model-index:
13
+ - name: Whisper Small German SBB
14
+ results:
15
+ - task:
16
+ name: Automatic Speech Recognition
17
+ type: automatic-speech-recognition
18
+ dataset:
19
+ name: SBB Dataset 29.11.2022
20
+ type: marccgrau/sbbdata
21
+ args: 'config: German, split: train, test, val'
22
+ metrics:
23
+ - name: Wer
24
+ type: wer
25
+ value: 0.8658008658008658
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # Whisper Small German SBB
32
+
33
+ This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the SBB Dataset 29.11.2022 dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.0151
36
+ - Wer: 0.8658
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 1e-05
56
+ - train_batch_size: 32
57
+ - eval_batch_size: 32
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - lr_scheduler_warmup_steps: 100
62
+ - training_steps: 500
63
+ - mixed_precision_training: Native AMP
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
68
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
69
+ | 0.8659 | 10.0 | 50 | 0.6119 | 6.4935 |
70
+ | 0.2183 | 20.0 | 100 | 0.0727 | 5.1948 |
71
+ | 0.0002 | 30.0 | 150 | 0.0168 | 0.8658 |
72
+ | 0.0001 | 40.0 | 200 | 0.0159 | 0.8658 |
73
+ | 0.0 | 50.0 | 250 | 0.0155 | 0.8658 |
74
+ | 0.0 | 60.0 | 300 | 0.0154 | 0.8658 |
75
+ | 0.0 | 70.0 | 350 | 0.0152 | 0.8658 |
76
+ | 0.0 | 80.0 | 400 | 0.0151 | 0.8658 |
77
+ | 0.0 | 90.0 | 450 | 0.0151 | 0.8658 |
78
+ | 0.0 | 100.0 | 500 | 0.0151 | 0.8658 |
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.25.1
84
+ - Pytorch 1.12.1
85
+ - Datasets 2.7.1
86
+ - Tokenizers 0.12.1