malaysia-ai2020 commited on
Commit
7390b54
1 Parent(s): f1ec5da

Upload folder using huggingface_hub

Browse files
args.yaml ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: detect
2
+ mode: train
3
+ model: /home/ubuntu/YoloV8/runs/detect/train/weights/last.pt
4
+ data: /home/ubuntu/YoloV8/ultralytics/ultralytics/datasets/doclaynet.yaml
5
+ epochs: 500
6
+ time: null
7
+ patience: 100
8
+ batch: 42
9
+ imgsz: 1024
10
+ save: true
11
+ save_period: -1
12
+ cache: false
13
+ device: null
14
+ workers: 12
15
+ project: null
16
+ name: train
17
+ exist_ok: false
18
+ pretrained: true
19
+ optimizer: auto
20
+ verbose: true
21
+ seed: 0
22
+ deterministic: true
23
+ single_cls: false
24
+ rect: false
25
+ cos_lr: false
26
+ close_mosaic: 10
27
+ resume: false
28
+ amp: true
29
+ fraction: 1.0
30
+ profile: false
31
+ freeze: null
32
+ multi_scale: false
33
+ overlap_mask: true
34
+ mask_ratio: 4
35
+ dropout: 0.0
36
+ val: true
37
+ split: val
38
+ save_json: false
39
+ save_hybrid: false
40
+ conf: null
41
+ iou: 0.7
42
+ max_det: 300
43
+ half: false
44
+ dnn: false
45
+ plots: true
46
+ source: null
47
+ vid_stride: 1
48
+ stream_buffer: false
49
+ visualize: false
50
+ augment: false
51
+ agnostic_nms: false
52
+ classes: null
53
+ retina_masks: false
54
+ embed: null
55
+ show: false
56
+ save_frames: false
57
+ save_txt: false
58
+ save_conf: false
59
+ save_crop: false
60
+ show_labels: true
61
+ show_conf: true
62
+ show_boxes: true
63
+ line_width: null
64
+ format: torchscript
65
+ keras: false
66
+ optimize: false
67
+ int8: false
68
+ dynamic: false
69
+ simplify: false
70
+ opset: null
71
+ workspace: 4
72
+ nms: false
73
+ lr0: 0.01
74
+ lrf: 0.01
75
+ momentum: 0.937
76
+ weight_decay: 0.0005
77
+ warmup_epochs: 3.0
78
+ warmup_momentum: 0.8
79
+ warmup_bias_lr: 0.0
80
+ box: 7.5
81
+ cls: 0.5
82
+ dfl: 1.5
83
+ pose: 12.0
84
+ kobj: 1.0
85
+ label_smoothing: 0.0
86
+ nbs: 64
87
+ hsv_h: 0.015
88
+ hsv_s: 0.7
89
+ hsv_v: 0.4
90
+ degrees: 0.0
91
+ translate: 0.1
92
+ scale: 0.5
93
+ shear: 0.0
94
+ perspective: 0.0
95
+ flipud: 0.0
96
+ fliplr: 0.5
97
+ bgr: 0.0
98
+ mosaic: 1.0
99
+ mixup: 0.0
100
+ copy_paste: 0.0
101
+ auto_augment: randaugment
102
+ erasing: 0.4
103
+ crop_fraction: 1.0
104
+ cfg: null
105
+ tracker: botsort.yaml
106
+ save_dir: runs/detect/train
labels.jpg ADDED
labels_correlogram.jpg ADDED
results.csv ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch, train/box_loss, train/cls_loss, train/dfl_loss, metrics/precision(B), metrics/recall(B), metrics/mAP50(B), metrics/mAP50-95(B), val/box_loss, val/cls_loss, val/dfl_loss, lr/pg0, lr/pg1, lr/pg2
2
+ 1, 0.96109, 1.2255, 1.0674, 0.71813, 0.68043, 0.74225, 0.51079, 1.0642, 0.86646, 0.91855, 0.0033313, 0.0033313, 0.0033313
3
+ 2, 0.73337, 0.73977, 0.91822, 0.80383, 0.74657, 0.81681, 0.60825, 0.83058, 0.72889, 0.87994, 0.0066514, 0.0066514, 0.0066514
4
+ 3, 0.69875, 0.71137, 0.90513, 0.85562, 0.7861, 0.86092, 0.67161, 0.73206, 0.58012, 0.85722, 0.0099584, 0.0099584, 0.0099584
5
+ 4, 0.61329, 0.61279, 0.88514, 0.86838, 0.80537, 0.87933, 0.68126, 0.77792, 0.55998, 0.85343, 0.0099406, 0.0099406, 0.0099406
6
+ 5, 0.56022, 0.56356, 0.87512, 0.86886, 0.81942, 0.8912, 0.70767, 0.72784, 0.52732, 0.84996, 0.0099406, 0.0099406, 0.0099406
7
+ 6, 0.52786, 0.53393, 0.86793, 0.86914, 0.83205, 0.9012, 0.72446, 0.69855, 0.50525, 0.8409, 0.0099208, 0.0099208, 0.0099208
8
+ 7, 0.50494, 0.51265, 0.86286, 0.88505, 0.83548, 0.90242, 0.71872, 0.73709, 0.4958, 0.84785, 0.009901, 0.009901, 0.009901
9
+ 8, 0.4896, 0.49852, 0.8599, 0.88633, 0.84299, 0.90687, 0.71486, 0.75906, 0.50218, 0.84894, 0.0098812, 0.0098812, 0.0098812
10
+ 9, 0.47637, 0.48674, 0.85764, 0.88599, 0.84077, 0.9087, 0.71948, 0.75841, 0.50189, 0.85305, 0.0098614, 0.0098614, 0.0098614
11
+ 10, 0.46535, 0.47528, 0.85547, 0.88902, 0.85604, 0.91398, 0.72704, 0.73245, 0.48571, 0.84774, 0.0098416, 0.0098416, 0.0098416
12
+ 11, 0.45739, 0.4688, 0.85326, 0.88943, 0.84935, 0.91462, 0.73189, 0.72967, 0.48239, 0.84474, 0.0098218, 0.0098218, 0.0098218
13
+ 12, 0.44792, 0.45852, 0.85177, 0.88568, 0.86046, 0.91503, 0.73155, 0.73761, 0.48711, 0.84709, 0.009802, 0.009802, 0.009802
14
+ 13, 0.44238, 0.45312, 0.8501, 0.89211, 0.86042, 0.91838, 0.73864, 0.72194, 0.47498, 0.84486, 0.0097822, 0.0097822, 0.0097822
15
+ 14, 0.43573, 0.44894, 0.84868, 0.89437, 0.8579, 0.91786, 0.73571, 0.72716, 0.47592, 0.84553, 0.0097624, 0.0097624, 0.0097624
16
+ 15, 0.43115, 0.44342, 0.84759, 0.89453, 0.8607, 0.91889, 0.73765, 0.72638, 0.47685, 0.84617, 0.0097426, 0.0097426, 0.0097426
17
+ 16, 0.42763, 0.44022, 0.84722, 0.89102, 0.86355, 0.91895, 0.7375, 0.72675, 0.47796, 0.84733, 0.0097228, 0.0097228, 0.0097228
18
+ 17, 0.42369, 0.43744, 0.84692, 0.89434, 0.86192, 0.91982, 0.73942, 0.72383, 0.47435, 0.84715, 0.009703, 0.009703, 0.009703
19
+ 18, 0.41853, 0.43016, 0.84607, 0.88825, 0.86581, 0.91968, 0.73903, 0.72345, 0.47298, 0.84687, 0.0096832, 0.0096832, 0.0096832
20
+ 19, 0.41744, 0.42721, 0.84513, 0.8927, 0.86203, 0.91974, 0.73973, 0.7222, 0.47104, 0.84702, 0.0096832, 0.0096832, 0.0096832
21
+ 20, 0.41897, 0.43032, 0.84521, 0.89271, 0.85982, 0.91954, 0.73994, 0.72239, 0.47103, 0.84725, 0.0096436, 0.0096436, 0.0096436
22
+ 21, 0.41671, 0.4292, 0.84451, 0.8884, 0.86587, 0.91992, 0.7404, 0.72175, 0.47045, 0.84697, 0.0096238, 0.0096238, 0.0096238
23
+ 22, 0.4136, 0.42692, 0.84419, 0.89533, 0.861, 0.92008, 0.74094, 0.72069, 0.47053, 0.84642, 0.009604, 0.009604, 0.009604
24
+ 23, 0.40774, 0.41237, 0.84223, 0.89476, 0.86159, 0.92039, 0.74113, 0.72024, 0.47011, 0.84645, 0.009604, 0.009604, 0.009604
25
+ 24, 0.41402, 0.4242, 0.84412, 0.8925, 0.86285, 0.92024, 0.74056, 0.72046, 0.47069, 0.84663, 0.0095644, 0.0095644, 0.0095644
26
+ 25, 0.4125, 0.42513, 0.84426, 0.89277, 0.86256, 0.92033, 0.74023, 0.72108, 0.47222, 0.84679, 0.0095446, 0.0095446, 0.0095446
27
+ 26, 0.4116, 0.42559, 0.84322, 0.89759, 0.85849, 0.92034, 0.74009, 0.72109, 0.47253, 0.84679, 0.0095248, 0.0095248, 0.0095248
28
+ 27, 0.40835, 0.42031, 0.8433, 0.89488, 0.86158, 0.92052, 0.74024, 0.7204, 0.47197, 0.84653, 0.009505, 0.009505, 0.009505
29
+ 28, 0.40516, 0.41868, 0.84343, 0.89934, 0.85903, 0.9208, 0.74056, 0.71998, 0.47172, 0.84637, 0.0094852, 0.0094852, 0.0094852
30
+ 29, 0.39831, 0.40115, 0.84061, 0.90006, 0.85842, 0.92056, 0.74066, 0.71916, 0.47115, 0.84637, 0.0094852, 0.0094852, 0.0094852
31
+ 30, 0.40679, 0.41619, 0.84245, 0.89807, 0.86004, 0.92075, 0.74057, 0.71906, 0.47109, 0.8462, 0.0094456, 0.0094456, 0.0094456
32
+ 31, 0.40678, 0.41908, 0.84277, 0.89723, 0.86134, 0.92119, 0.74095, 0.71957, 0.47077, 0.84612, 0.0094258, 0.0094258, 0.0094258
33
+ 32, 0.40612, 0.41929, 0.84241, 0.89869, 0.85953, 0.92104, 0.74103, 0.71915, 0.47077, 0.84576, 0.009406, 0.009406, 0.009406
34
+ 33, 0.40299, 0.41655, 0.84229, 0.89629, 0.86222, 0.92114, 0.74156, 0.71836, 0.47032, 0.84556, 0.0093862, 0.0093862, 0.0093862
35
+ 34, 0.40109, 0.41502, 0.84197, 0.89659, 0.86227, 0.92144, 0.74275, 0.717, 0.46931, 0.84536, 0.0093664, 0.0093664, 0.0093664
36
+ 35, 0.39928, 0.41353, 0.84111, 0.89882, 0.86145, 0.92161, 0.74326, 0.71577, 0.46824, 0.84473, 0.0093466, 0.0093466, 0.0093466
37
+ 36, 0.39656, 0.40975, 0.84096, 0.89937, 0.86217, 0.92165, 0.74413, 0.71458, 0.46796, 0.84435, 0.0093268, 0.0093268, 0.0093268
38
+ 37, 0.39365, 0.40737, 0.83997, 0.90081, 0.86245, 0.92205, 0.74489, 0.71313, 0.46713, 0.84411, 0.009307, 0.009307, 0.009307
39
+ 38, 0.3919, 0.40677, 0.84026, 0.9037, 0.86149, 0.9224, 0.74596, 0.71066, 0.46641, 0.84376, 0.0092872, 0.0092872, 0.0092872
40
+ 39, 0.39104, 0.40513, 0.84014, 0.90332, 0.862, 0.92246, 0.74696, 0.70919, 0.46573, 0.84353, 0.0092674, 0.0092674, 0.0092674
41
+ 40, 0.39023, 0.40507, 0.83947, 0.90486, 0.85996, 0.92295, 0.74753, 0.70839, 0.46559, 0.84331, 0.0092476, 0.0092476, 0.0092476
42
+ 41, 0.38878, 0.40509, 0.84004, 0.90448, 0.8604, 0.92287, 0.74808, 0.70768, 0.46451, 0.8433, 0.0092278, 0.0092278, 0.0092278
43
+ 42, 0.38672, 0.40124, 0.83998, 0.90669, 0.85925, 0.92305, 0.74829, 0.70784, 0.46423, 0.84347, 0.009208, 0.009208, 0.009208
44
+ 43, 0.3852, 0.40006, 0.83863, 0.90482, 0.86151, 0.9233, 0.7487, 0.70768, 0.46336, 0.84346, 0.0091882, 0.0091882, 0.0091882
45
+ 44, 0.3862, 0.402, 0.83967, 0.90577, 0.86172, 0.9235, 0.74876, 0.70872, 0.46343, 0.84338, 0.0091684, 0.0091684, 0.0091684
46
+ 45, 0.38293, 0.38847, 0.83806, 0.90655, 0.86079, 0.92353, 0.74861, 0.70851, 0.463, 0.84354, 0.0091684, 0.0091684, 0.0091684
47
+ 46, 0.39021, 0.3993, 0.83976, 0.90862, 0.8585, 0.92347, 0.74846, 0.70909, 0.4636, 0.84379, 0.0091288, 0.0091288, 0.0091288
48
+ 47, 0.3903, 0.4033, 0.83957, 0.91007, 0.8579, 0.92343, 0.74824, 0.70901, 0.46445, 0.84413, 0.009109, 0.009109, 0.009109
49
+ 48, 0.39017, 0.40326, 0.84015, 0.90976, 0.85783, 0.92352, 0.74852, 0.70885, 0.46466, 0.84422, 0.0090892, 0.0090892, 0.0090892
50
+ 49, 0.3884, 0.40081, 0.84061, 0.90748, 0.85917, 0.9234, 0.74882, 0.70807, 0.46422, 0.84437, 0.0090694, 0.0090694, 0.0090694
51
+ 50, 0.38785, 0.40236, 0.84036, 0.90497, 0.86239, 0.92335, 0.7489, 0.7074, 0.46396, 0.84453, 0.0090496, 0.0090496, 0.0090496
52
+ 51, 0.37683, 0.37942, 0.83644, 0.90332, 0.86103, 0.92341, 0.7492, 0.70678, 0.46421, 0.84462, 0.0090496, 0.0090496, 0.0090496
53
+ 52, 0.38575, 0.39507, 0.8387, 0.90383, 0.86179, 0.92352, 0.74931, 0.70636, 0.46464, 0.845, 0.00901, 0.00901, 0.00901
54
+ 53, 0.38684, 0.39867, 0.8396, 0.90563, 0.86149, 0.92355, 0.74924, 0.70711, 0.46537, 0.84523, 0.0089902, 0.0089902, 0.0089902
55
+ 54, 0.38813, 0.4022, 0.83951, 0.90778, 0.85988, 0.92358, 0.74926, 0.70742, 0.46591, 0.8454, 0.0089704, 0.0089704, 0.0089704
56
+ 55, 0.38659, 0.39986, 0.83949, 0.90775, 0.86034, 0.92368, 0.74947, 0.70637, 0.46572, 0.84528, 0.0089506, 0.0089506, 0.0089506
57
+ 56, 0.38535, 0.39967, 0.83926, 0.90652, 0.86103, 0.92358, 0.74986, 0.70539, 0.46554, 0.8451, 0.0089308, 0.0089308, 0.0089308
58
+ 57, 0.37132, 0.3713, 0.83488, 0.90612, 0.86143, 0.92376, 0.75035, 0.70457, 0.465, 0.84503, 0.0089308, 0.0089308, 0.0089308
59
+ 58, 0.38101, 0.3886, 0.83758, 0.90434, 0.86259, 0.92363, 0.75019, 0.70464, 0.46506, 0.84515, 0.0088912, 0.0088912, 0.0088912
60
+ 59, 0.38375, 0.39506, 0.83916, 0.90686, 0.86063, 0.92351, 0.7499, 0.7054, 0.46565, 0.84533, 0.0088714, 0.0088714, 0.0088714
61
+ 60, 0.38517, 0.39817, 0.83896, 0.91014, 0.85859, 0.92369, 0.74967, 0.70572, 0.46591, 0.84527, 0.0088516, 0.0088516, 0.0088516
62
+ 61, 0.38276, 0.39578, 0.83896, 0.90836, 0.85966, 0.92373, 0.74967, 0.70578, 0.46599, 0.8453, 0.0088318, 0.0088318, 0.0088318
63
+ 62, 0.38269, 0.39649, 0.83938, 0.9085, 0.85907, 0.92361, 0.74953, 0.70581, 0.46619, 0.84532, 0.008812, 0.008812, 0.008812
64
+ 63, 0.38213, 0.39687, 0.83884, 0.90723, 0.86207, 0.92373, 0.75034, 0.70409, 0.4657, 0.84505, 0.0087922, 0.0087922, 0.0087922
65
+ 64, 0.3799, 0.39235, 0.83797, 0.9071, 0.86234, 0.92399, 0.75097, 0.703, 0.46498, 0.8448, 0.0087724, 0.0087724, 0.0087724
66
+ 65, 0.37886, 0.39249, 0.83704, 0.90598, 0.86258, 0.92425, 0.75145, 0.70244, 0.46459, 0.84462, 0.0087526, 0.0087526, 0.0087526
67
+ 66, 0.3785, 0.39252, 0.83722, 0.90851, 0.86066, 0.92445, 0.75153, 0.70202, 0.46428, 0.84433, 0.0087328, 0.0087328, 0.0087328
68
+ 67, 0.37801, 0.39168, 0.8376, 0.90505, 0.86434, 0.92456, 0.75231, 0.70045, 0.46334, 0.84381, 0.008713, 0.008713, 0.008713
train_batch0.jpg ADDED
train_batch1.jpg ADDED
train_batch2.jpg ADDED
weights/best.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2fe83a9a5bcc17d1a66f4aaeead7a80f3f7fe6ad1bcbac03d1b9e05a6a8b3006
3
+ size 273040277
weights/best.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d644d8a4c24398e8070aaae8763bdcb0d7ee4a73e7c28da6eef1731ea6277335
3
+ size 546233594
weights/last.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:291bcf58bb757e2aad74b4fa4c612874908d49f80cf7bb52fef4a8b9d6991d94
3
+ size 546233594