--- tags: - autotrain - tabular - regression - tabular-regression datasets: - rea-svm/autotrain-data --- # Model Trained Using AutoTrain - Problem type: Tabular regression ## Validation Metrics - r2: -13.723120886842382 - mse: 38015883737.055504 - mae: 174448.73032973852 - rmse: 194976.62356563544 - rmsle: 2.6073960566969823 - loss: 194976.62356563544 ## Best Params - C: 60.27729201980406 - fit_intercept: False - loss: epsilon_insensitive - epsilon: 0.00020827552565594136 - max_iter: 9903 ## Usage ```python import json import joblib import pandas as pd model = joblib.load('model.joblib') config = json.load(open('config.json')) features = config['features'] # data = pd.read_csv("data.csv") data = data[features] predictions = model.predict(data) # or model.predict_proba(data) # predictions can be converted to original labels using label_encoders.pkl ```