File size: 10,736 Bytes
c945601 185606f c945601 88575bb 185606f c945601 88575bb c945601 88575bb c945601 88575bb c945601 88575bb c945601 88575bb c945601 88575bb c945601 88575bb dd752c4 88575bb dd752c4 88575bb c945601 9d090ff c945601 61e2bab 88575bb c945601 5d5d297 49ede63 5d5d297 49ede63 185606f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
---
license: cc
library_name: transformers
datasets:
- jondurbin/truthy-dpo-v0.1
model-index:
- name: MBX-7B-v3-DPO
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 73.55
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/MBX-7B-v3-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 89.11
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/MBX-7B-v3-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.91
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/MBX-7B-v3-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 74.0
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/MBX-7B-v3-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 85.56
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/MBX-7B-v3-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 69.67
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/MBX-7B-v3-DPO
name: Open LLM Leaderboard
---
# MBX-7B-v3-DPO
This model is a finetune of [flemmingmiguel/MBX-7B-v3](https://huggingface.co/flemmingmiguel/MBX-7B-v3) using jondurbin/truthy-dpo-v0.1
![MBX-v3-orca](MBX-v3-orca.png)
## Code Example
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("macadeliccc/MBX-7B-v3-DPO")
model = AutoModelForCausalLM.from_pretrained("macadeliccc/MBX-7B-v3-DPO")
messages = [
{"role": "system", "content": "Respond to the users request like a pirate"},
{"role": "user", "content": "Can you write me a quicksort algorithm?"}
]
gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
```
## Example Output
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6455cc8d679315e4ef16fbec/g5_PTJhGJAcG88wmZz1IO.png)
## GGUF
Available [here](https://huggingface.co/macadeliccc/MBX-7B-v3-DPO-GGUF/tree/main)
## Exllamav2
Quants are available from bartowski, check them out [here](https://huggingface.co/bartowski/MBX-7B-v3-DPO-exl2)
Download the size you want below, VRAM figures are estimates.
| Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description |
| ----- | ---- | ------- | ------ | ------ | ------ | ------------ |
| [8_0](https://huggingface.co/bartowski/MBX-7B-v3-DPO-exl2/tree/8_0) | 8.0 | 8.0 | 8.4 GB | 9.8 GB | 11.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. |
| [6_5](https://huggingface.co/bartowski/MBX-7B-v3-DPO-exl2/tree/6_5) | 6.5 | 8.0 | 7.2 GB | 8.6 GB | 10.6 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. |
| [5_0](https://huggingface.co/bartowski/MBX-7B-v3-DPO-exl2/tree/5_0) | 5.0 | 6.0 | 6.0 GB | 7.4 GB | 9.4 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. |
| [4_25](https://huggingface.co/bartowski/MBX-7B-v3-DPO-exl2/tree/4_25) | 4.25 | 6.0 | 5.3 GB | 6.7 GB | 8.7 GB | GPTQ equivalent bits per weight, slightly higher quality. |
| [3_5](https://huggingface.co/bartowski/MBX-7B-v3-DPO-exl2/tree/3_5) | 3.5 | 6.0 | 4.7 GB | 6.1 GB | 8.1 GB | Lower quality, only use if you have to. |
## Evaluations
## EQ-Bench Comparison
<pre>----Benchmark Complete----
2024-01-30 15:22:18
Time taken: 145.9 mins
Prompt Format: ChatML
Model: macadeliccc/MBX-7B-v3-DPO
Score (v2): 74.32
Parseable: 166.0
---------------
Batch completed
Time taken: 145.9 mins
---------------
</pre>
### Original Model
<pre>----Benchmark Complete----
2024-01-31 01:26:26
Time taken: 89.1 mins
Prompt Format: Mistral
Model: flemmingmiguel/MBX-7B-v3
Score (v2): 73.87
Parseable: 168.0
---------------
Batch completed
Time taken: 89.1 mins
---------------
</pre>
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|-----------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[MBX-7B-v3-DPO](https://huggingface.co/macadeliccc/MBX-7B-v3-DPO)| 45.16| 77.73| 74.62| 48.83| 61.58|
### AGIEval
| Task |Version| Metric |Value| |Stderr|
|------------------------------|------:|--------|----:|---|-----:|
|agieval_aqua_rat | 0|acc |27.95|± | 2.82|
| | |acc_norm|26.77|± | 2.78|
|agieval_logiqa_en | 0|acc |41.01|± | 1.93|
| | |acc_norm|40.55|± | 1.93|
|agieval_lsat_ar | 0|acc |25.65|± | 2.89|
| | |acc_norm|23.91|± | 2.82|
|agieval_lsat_lr | 0|acc |50.78|± | 2.22|
| | |acc_norm|52.94|± | 2.21|
|agieval_lsat_rc | 0|acc |66.54|± | 2.88|
| | |acc_norm|65.80|± | 2.90|
|agieval_sat_en | 0|acc |77.67|± | 2.91|
| | |acc_norm|77.67|± | 2.91|
|agieval_sat_en_without_passage| 0|acc |43.20|± | 3.46|
| | |acc_norm|43.20|± | 3.46|
|agieval_sat_math | 0|acc |32.27|± | 3.16|
| | |acc_norm|30.45|± | 3.11|
Average: 45.16%
### GPT4All
| Task |Version| Metric |Value| |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge| 0|acc |68.43|± | 1.36|
| | |acc_norm|68.34|± | 1.36|
|arc_easy | 0|acc |87.54|± | 0.68|
| | |acc_norm|82.11|± | 0.79|
|boolq | 1|acc |88.20|± | 0.56|
|hellaswag | 0|acc |69.76|± | 0.46|
| | |acc_norm|87.40|± | 0.33|
|openbookqa | 0|acc |40.20|± | 2.19|
| | |acc_norm|49.60|± | 2.24|
|piqa | 0|acc |83.68|± | 0.86|
| | |acc_norm|85.36|± | 0.82|
|winogrande | 0|acc |83.11|± | 1.05|
Average: 77.73%
### TruthfulQA
| Task |Version|Metric|Value| |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc| 1|mc1 |58.87|± | 1.72|
| | |mc2 |74.62|± | 1.44|
Average: 74.62%
### Bigbench
| Task |Version| Metric |Value| |Stderr|
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|bigbench_causal_judgement | 0|multiple_choice_grade|60.00|± | 3.56|
|bigbench_date_understanding | 0|multiple_choice_grade|63.14|± | 2.51|
|bigbench_disambiguation_qa | 0|multiple_choice_grade|47.67|± | 3.12|
|bigbench_geometric_shapes | 0|multiple_choice_grade|22.56|± | 2.21|
| | |exact_str_match | 0.84|± | 0.48|
|bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|33.20|± | 2.11|
|bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|23.00|± | 1.59|
|bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|59.67|± | 2.84|
|bigbench_movie_recommendation | 0|multiple_choice_grade|47.40|± | 2.24|
|bigbench_navigate | 0|multiple_choice_grade|56.10|± | 1.57|
|bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|71.25|± | 1.01|
|bigbench_ruin_names | 0|multiple_choice_grade|56.47|± | 2.35|
|bigbench_salient_translation_error_detection | 0|multiple_choice_grade|35.27|± | 1.51|
|bigbench_snarks | 0|multiple_choice_grade|73.48|± | 3.29|
|bigbench_sports_understanding | 0|multiple_choice_grade|75.46|± | 1.37|
|bigbench_temporal_sequences | 0|multiple_choice_grade|52.10|± | 1.58|
|bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|22.64|± | 1.18|
|bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|19.83|± | 0.95|
|bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|59.67|± | 2.84|
Average: 48.83%
Average score: 61.58%
Elapsed time: 02:37:39
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__MBX-7B-v3-DPO)
| Metric |Value|
|---------------------------------|----:|
|Avg. |76.13|
|AI2 Reasoning Challenge (25-Shot)|73.55|
|HellaSwag (10-Shot) |89.11|
|MMLU (5-Shot) |64.91|
|TruthfulQA (0-shot) |74.00|
|Winogrande (5-shot) |85.56|
|GSM8k (5-shot) |69.67|
|