File size: 10,736 Bytes
c945601
185606f
c945601
88575bb
 
185606f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c945601
 
88575bb
c945601
88575bb
c945601
88575bb
c945601
88575bb
c945601
88575bb
 
c945601
88575bb
 
c945601
88575bb
dd752c4
 
88575bb
 
 
dd752c4
 
 
 
 
88575bb
c945601
9d090ff
c945601
61e2bab
 
 
 
 
 
 
 
 
 
 
 
 
 
88575bb
c945601
5d5d297
49ede63
 
 
 
 
 
 
 
 
 
 
 
 
 
5d5d297
 
 
 
 
 
 
 
 
 
 
 
 
 
49ede63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
185606f
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
---
license: cc
library_name: transformers
datasets:
- jondurbin/truthy-dpo-v0.1
model-index:
- name: MBX-7B-v3-DPO
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 73.55
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/MBX-7B-v3-DPO
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 89.11
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/MBX-7B-v3-DPO
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 64.91
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/MBX-7B-v3-DPO
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 74.0
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/MBX-7B-v3-DPO
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 85.56
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/MBX-7B-v3-DPO
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 69.67
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/MBX-7B-v3-DPO
      name: Open LLM Leaderboard
---

# MBX-7B-v3-DPO

This model is a finetune of [flemmingmiguel/MBX-7B-v3](https://huggingface.co/flemmingmiguel/MBX-7B-v3) using jondurbin/truthy-dpo-v0.1

![MBX-v3-orca](MBX-v3-orca.png)

## Code Example 

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("macadeliccc/MBX-7B-v3-DPO")
model = AutoModelForCausalLM.from_pretrained("macadeliccc/MBX-7B-v3-DPO")

messages = [
    {"role": "system", "content": "Respond to the users request like a pirate"},
    {"role": "user", "content": "Can you write me a quicksort algorithm?"}
]
gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
```

## Example Output 

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6455cc8d679315e4ef16fbec/g5_PTJhGJAcG88wmZz1IO.png)

## GGUF

Available [here](https://huggingface.co/macadeliccc/MBX-7B-v3-DPO-GGUF/tree/main)

## Exllamav2

Quants are available from bartowski, check them out [here](https://huggingface.co/bartowski/MBX-7B-v3-DPO-exl2)

Download the size you want below, VRAM figures are estimates.

| Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description |
| ----- | ---- | ------- | ------ | ------ | ------ | ------------ |
| [8_0](https://huggingface.co/bartowski/MBX-7B-v3-DPO-exl2/tree/8_0) | 8.0 | 8.0 | 8.4 GB | 9.8 GB | 11.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. |
| [6_5](https://huggingface.co/bartowski/MBX-7B-v3-DPO-exl2/tree/6_5) | 6.5 | 8.0 | 7.2 GB | 8.6 GB | 10.6 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. |
| [5_0](https://huggingface.co/bartowski/MBX-7B-v3-DPO-exl2/tree/5_0) | 5.0 | 6.0 | 6.0 GB | 7.4 GB |  9.4 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. |
| [4_25](https://huggingface.co/bartowski/MBX-7B-v3-DPO-exl2/tree/4_25) | 4.25 | 6.0 | 5.3 GB | 6.7 GB | 8.7 GB | GPTQ equivalent bits per weight, slightly higher quality. |
| [3_5](https://huggingface.co/bartowski/MBX-7B-v3-DPO-exl2/tree/3_5) | 3.5 | 6.0 | 4.7 GB | 6.1 GB | 8.1 GB | Lower quality, only use if you have to. |

## Evaluations

## EQ-Bench Comparison

<pre>----Benchmark Complete----
2024-01-30 15:22:18
Time taken: 145.9 mins
Prompt Format: ChatML
Model: macadeliccc/MBX-7B-v3-DPO
Score (v2): 74.32
Parseable: 166.0
---------------
Batch completed
Time taken: 145.9 mins
---------------
</pre>

### Original Model
<pre>----Benchmark Complete----
2024-01-31 01:26:26
Time taken: 89.1 mins
Prompt Format: Mistral
Model: flemmingmiguel/MBX-7B-v3
Score (v2): 73.87
Parseable: 168.0
---------------
Batch completed
Time taken: 89.1 mins
---------------
</pre>

|                              Model                              |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|-----------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[MBX-7B-v3-DPO](https://huggingface.co/macadeliccc/MBX-7B-v3-DPO)|  45.16|  77.73|     74.62|   48.83|  61.58|

### AGIEval
|             Task             |Version| Metric |Value|   |Stderr|
|------------------------------|------:|--------|----:|---|-----:|
|agieval_aqua_rat              |      0|acc     |27.95|±  |  2.82|
|                              |       |acc_norm|26.77|±  |  2.78|
|agieval_logiqa_en             |      0|acc     |41.01|±  |  1.93|
|                              |       |acc_norm|40.55|±  |  1.93|
|agieval_lsat_ar               |      0|acc     |25.65|±  |  2.89|
|                              |       |acc_norm|23.91|±  |  2.82|
|agieval_lsat_lr               |      0|acc     |50.78|±  |  2.22|
|                              |       |acc_norm|52.94|±  |  2.21|
|agieval_lsat_rc               |      0|acc     |66.54|±  |  2.88|
|                              |       |acc_norm|65.80|±  |  2.90|
|agieval_sat_en                |      0|acc     |77.67|±  |  2.91|
|                              |       |acc_norm|77.67|±  |  2.91|
|agieval_sat_en_without_passage|      0|acc     |43.20|±  |  3.46|
|                              |       |acc_norm|43.20|±  |  3.46|
|agieval_sat_math              |      0|acc     |32.27|±  |  3.16|
|                              |       |acc_norm|30.45|±  |  3.11|

Average: 45.16%

### GPT4All
|    Task     |Version| Metric |Value|   |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge|      0|acc     |68.43|±  |  1.36|
|             |       |acc_norm|68.34|±  |  1.36|
|arc_easy     |      0|acc     |87.54|±  |  0.68|
|             |       |acc_norm|82.11|±  |  0.79|
|boolq        |      1|acc     |88.20|±  |  0.56|
|hellaswag    |      0|acc     |69.76|±  |  0.46|
|             |       |acc_norm|87.40|±  |  0.33|
|openbookqa   |      0|acc     |40.20|±  |  2.19|
|             |       |acc_norm|49.60|±  |  2.24|
|piqa         |      0|acc     |83.68|±  |  0.86|
|             |       |acc_norm|85.36|±  |  0.82|
|winogrande   |      0|acc     |83.11|±  |  1.05|

Average: 77.73%

### TruthfulQA
|    Task     |Version|Metric|Value|   |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc|      1|mc1   |58.87|±  |  1.72|
|             |       |mc2   |74.62|±  |  1.44|

Average: 74.62%

### Bigbench
|                      Task                      |Version|       Metric        |Value|   |Stderr|
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|bigbench_causal_judgement                       |      0|multiple_choice_grade|60.00|±  |  3.56|
|bigbench_date_understanding                     |      0|multiple_choice_grade|63.14|±  |  2.51|
|bigbench_disambiguation_qa                      |      0|multiple_choice_grade|47.67|±  |  3.12|
|bigbench_geometric_shapes                       |      0|multiple_choice_grade|22.56|±  |  2.21|
|                                                |       |exact_str_match      | 0.84|±  |  0.48|
|bigbench_logical_deduction_five_objects         |      0|multiple_choice_grade|33.20|±  |  2.11|
|bigbench_logical_deduction_seven_objects        |      0|multiple_choice_grade|23.00|±  |  1.59|
|bigbench_logical_deduction_three_objects        |      0|multiple_choice_grade|59.67|±  |  2.84|
|bigbench_movie_recommendation                   |      0|multiple_choice_grade|47.40|±  |  2.24|
|bigbench_navigate                               |      0|multiple_choice_grade|56.10|±  |  1.57|
|bigbench_reasoning_about_colored_objects        |      0|multiple_choice_grade|71.25|±  |  1.01|
|bigbench_ruin_names                             |      0|multiple_choice_grade|56.47|±  |  2.35|
|bigbench_salient_translation_error_detection    |      0|multiple_choice_grade|35.27|±  |  1.51|
|bigbench_snarks                                 |      0|multiple_choice_grade|73.48|±  |  3.29|
|bigbench_sports_understanding                   |      0|multiple_choice_grade|75.46|±  |  1.37|
|bigbench_temporal_sequences                     |      0|multiple_choice_grade|52.10|±  |  1.58|
|bigbench_tracking_shuffled_objects_five_objects |      0|multiple_choice_grade|22.64|±  |  1.18|
|bigbench_tracking_shuffled_objects_seven_objects|      0|multiple_choice_grade|19.83|±  |  0.95|
|bigbench_tracking_shuffled_objects_three_objects|      0|multiple_choice_grade|59.67|±  |  2.84|

Average: 48.83%

Average score: 61.58%

Elapsed time: 02:37:39
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__MBX-7B-v3-DPO)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |76.13|
|AI2 Reasoning Challenge (25-Shot)|73.55|
|HellaSwag (10-Shot)              |89.11|
|MMLU (5-Shot)                    |64.91|
|TruthfulQA (0-shot)              |74.00|
|Winogrande (5-shot)              |85.56|
|GSM8k (5-shot)                   |69.67|