from einops import rearrange, repeat import torch from torchvision import transforms from PIL import Image, ImageFile import random from torchvision.ops.boxes import box_area from torchvision.transforms.transforms import InterpolationMode from torchvision.transforms import functional as F import numpy as np from icecream import ic import re ImageFile.LOAD_TRUNCATED_IMAGES = True ImageFile.MAX_IMAGE_PIXELS = None Image.MAX_IMAGE_PIXELS = None from .constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN def box_iou(boxes1, area1, boxes2, eps=1e-5): area2 = box_area(boxes2) lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2] wh = (rb - lt).clamp(min=0) # [N,M,2] inter = wh[:, :, 0] * wh[:, :, 1] # [N,M] union = area1[:, None] + area2 - inter iou = inter / (union+eps) return iou, union def anchor_rank(anchors, anchors_areas, input_image_size, eps=1e-5): # anchors x1 y1 x2 y2 # image_size: (h, w) # xyxy input_image_bbox = torch.tensor([0, 0, input_image_size[1], input_image_size[0]]).unsqueeze(0) boxes1 = anchors boxes2 = input_image_bbox boxes3 = anchors.clone() # y2 boxes3[:,3] = input_image_size[0]/input_image_size[1]*anchors[:,2] # 用于算分辨率无关的iou area1 = anchors_areas iou, _ = box_iou(boxes1, area1, boxes2) iou = iou.squeeze(1) shape_iou, _ = box_iou(boxes1, area1, boxes3) shape_iou = shape_iou.diag() # 优先匹配形状接近 再匹配分辨率接近 index = torch.argmax(shape_iou*100+iou,dim=0) return index class AnchorResize(torch.nn.Module): def __init__(self, image_size, anchors, interpolation=InterpolationMode.BILINEAR, antialias=None): super().__init__() # xyxy self.anchors = torch.tensor( [[0, 0, _[1]*image_size[1], _[0]*image_size[0]] for _ in anchors], requires_grad=False ) self.anchor_areas = box_area(self.anchors) self.interpolation = interpolation self.antialias = antialias def forward(self, img, skip_resize=False): """ Args: img (PIL Image or Tensor): Image to be scaled. Returns: PIL Image or Tensor: Rescaled image. """ selected_anchor = anchor_rank(self.anchors, self.anchor_areas, (img.size[1], img.size[0])) target_size = self.anchors[selected_anchor][2:].tolist() # w,h if skip_resize: # for debug return selected_anchor return F.resize(img, [target_size[1],target_size[0]], self.interpolation, max_size=None, antialias=self.antialias), selected_anchor def __repr__(self) -> str: detail = f"(size={self.image_size}, anchor={self.anchors}, interpolation={self.interpolation.value}, antialias={self.antialias})" return f"{self.__class__.__name__}{detail}" class DocProcessor(): def __init__(self, tokenizer=None, image_size=504, anchors='grid_12'): self.media_token= "<|image|>" # h,w if isinstance(image_size, int): image_size = (image_size, image_size) self.image_size = image_size # h,w # anchors = grid_dict[anchors] max_crop = int(anchors.split('_')[1]) anchors = [(j, int(i/j)) for i in range(1,max_crop+1) for j in range(1, i+1) if i%j==0] self.anchors = [tuple(_) for _ in anchors] self.anchor_max = max([max(_) for _ in self.anchors]) # xywh -> xyxy self.resizer = AnchorResize(image_size=image_size, anchors=anchors, interpolation=InterpolationMode.BICUBIC) self.old_resizer = transforms.Resize(image_size,interpolation=InterpolationMode.BICUBIC) self.image_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), ]) self.tokenizer = tokenizer def _process_image(self, images): new_images = [] new_patch_position = [] num_image_mult = [] for image in images: nocut_image = self.image_transform(self.old_resizer(image)).unsqueeze(0) image, selected_anchor = self.resizer(image) image_input = self.image_transform(image) # h,w,3 -> 3,h,w # rearrange(x,'B C (n1 h) (n2 w) -> (B n1 n2) C h w', n1=self.down_sample[0], n2=self.down_sample[1]) image_input = rearrange(image_input, 'C (num_h h) (num_w w) -> (num_h num_w) C h w', h=self.image_size[0], w=self.image_size[1]) image_input = torch.cat([nocut_image, image_input], dim=0) anchor = self.anchors[selected_anchor] # w,h patch_position = torch.cat([ repeat(torch.arange(anchor[0]), 'num_h -> num_h num_w 1', num_w=anchor[1]), repeat(torch.arange(anchor[1]), 'num_w -> num_h num_w 1', num_h=anchor[0])],dim=2) patch_position = rearrange(patch_position, 'num_h num_w p-> (num_h num_w) p', p=2) # num_patch, (ph,pw) patch_position = torch.cat([torch.ones(1,2).long()*self.anchor_max, patch_position], dim=0) new_images.append(image_input) new_patch_position.append(patch_position) num_image_mult.append(patch_position.shape[0]) new_images = torch.cat(new_images,dim=0) new_patch_position = torch.cat(new_patch_position, dim=0) return new_images, new_patch_position, num_image_mult def __call__(self, images=None, messages=None): assert images is not None # print(images) ## 1. process images if not isinstance(images, list): images = [images] image_pils = [] for image in images: if isinstance(image, str): image = Image.open(image).convert('RGB') else: image = image.convert('RGB') # ic(image.size) image_pils.append(image) image_data, patch_position, num_image_mult = self._process_image(image_pils) ## 2. process text # 2.1 add image ordinal token (e.g. ) before image placeholder <|image|> image_index = 1 # start from 1 for m in messages: try: assert m['role'] in ['USER', 'ASSISTANT'] except Exception as e: print("Unexpected role: "+m['role']+", only support 'USER' or 'ASSISTANT'") exit(0) if m['role'] == 'USER' and self.media_token in m.get('content', ''): pattern = '|'.join(map(re.escape, [self.media_token])) text_list = re.split(f'({pattern})', m['content']) text = '' for x in text_list: if x == '<|image|>': text += '<|image|>' image_index += 1 else: text += x m['content'] = text if messages[-1]['role'] == 'USER': messages.append({'role':'ASSISTANT'}) else: try: assert messages[-1].get('content', '') == '' except Exception as e: print("Unexpected end message: "+str(messages[-1]), "only (role=='USER') or (role=='ASSISTANT' and content=='') are expected.") exit(0) # print('after adding img ordinal token: ', messages) # 2.2 text tokenize seps = [' ', ''] prompt = "" for i, m in enumerate(messages): if 'content' in m: prompt += m['role'] + ": " + m['content'] + seps[i % 2] else: prompt += m['role'] + ":" ic(prompt) assert self.media_token in prompt input_ids = self.tokenizer_token(prompt) return image_data, patch_position, input_ids def tokenizer_token(self, prompt): prompt_chunks = [self.tokenizer(chunk).input_ids if len(chunk) > 0 else [] for chunk in prompt.split(DEFAULT_IMAGE_TOKEN)] def insert_separator(X, sep): return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1] input_ids = [] offset = 0 if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == self.tokenizer.bos_token_id: offset = 1 input_ids.append(prompt_chunks[0][0]) for x in insert_separator(prompt_chunks, [IMAGE_TOKEN_INDEX] * (offset + 1)): input_ids.extend(x[offset:]) return torch.tensor(input_ids, dtype=torch.long)