from einops import rearrange, repeat
import torch
from torchvision import transforms
from PIL import Image, ImageFile
import random
from torchvision.ops.boxes import box_area
from torchvision.transforms.transforms import InterpolationMode
from torchvision.transforms import functional as F
import numpy as np
from icecream import ic
import re
ImageFile.LOAD_TRUNCATED_IMAGES = True
ImageFile.MAX_IMAGE_PIXELS = None
Image.MAX_IMAGE_PIXELS = None
from .constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
def box_iou(boxes1, area1, boxes2, eps=1e-5):
area2 = box_area(boxes2)
lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
wh = (rb - lt).clamp(min=0) # [N,M,2]
inter = wh[:, :, 0] * wh[:, :, 1] # [N,M]
union = area1[:, None] + area2 - inter
iou = inter / (union+eps)
return iou, union
def anchor_rank(anchors, anchors_areas, input_image_size, eps=1e-5):
# anchors x1 y1 x2 y2
# image_size: (h, w)
# xyxy
input_image_bbox = torch.tensor([0, 0, input_image_size[1], input_image_size[0]]).unsqueeze(0)
boxes1 = anchors
boxes2 = input_image_bbox
boxes3 = anchors.clone()
# y2
boxes3[:,3] = input_image_size[0]/input_image_size[1]*anchors[:,2] # 用于算分辨率无关的iou
area1 = anchors_areas
iou, _ = box_iou(boxes1, area1, boxes2)
iou = iou.squeeze(1)
shape_iou, _ = box_iou(boxes1, area1, boxes3)
shape_iou = shape_iou.diag()
# 优先匹配形状接近 再匹配分辨率接近
index = torch.argmax(shape_iou*100+iou,dim=0)
return index
class AnchorResize(torch.nn.Module):
def __init__(self, image_size, anchors, interpolation=InterpolationMode.BILINEAR, antialias=None):
super().__init__()
# xyxy
self.anchors = torch.tensor(
[[0, 0, _[1]*image_size[1], _[0]*image_size[0]]
for _ in anchors], requires_grad=False
)
self.anchor_areas = box_area(self.anchors)
self.interpolation = interpolation
self.antialias = antialias
def forward(self, img, skip_resize=False):
"""
Args:
img (PIL Image or Tensor): Image to be scaled.
Returns:
PIL Image or Tensor: Rescaled image.
"""
selected_anchor = anchor_rank(self.anchors, self.anchor_areas, (img.size[1], img.size[0]))
target_size = self.anchors[selected_anchor][2:].tolist() # w,h
if skip_resize:
# for debug
return selected_anchor
return F.resize(img, [target_size[1],target_size[0]], self.interpolation, max_size=None, antialias=self.antialias), selected_anchor
def __repr__(self) -> str:
detail = f"(size={self.image_size}, anchor={self.anchors}, interpolation={self.interpolation.value}, antialias={self.antialias})"
return f"{self.__class__.__name__}{detail}"
class DocProcessor():
def __init__(self, tokenizer=None, image_size=504, anchors='grid_12'):
self.media_token= "<|image|>"
# h,w
if isinstance(image_size, int):
image_size = (image_size, image_size)
self.image_size = image_size
# h,w
# anchors = grid_dict[anchors]
max_crop = int(anchors.split('_')[1])
anchors = [(j, int(i/j)) for i in range(1,max_crop+1) for j in range(1, i+1) if i%j==0]
self.anchors = [tuple(_) for _ in anchors]
self.anchor_max = max([max(_) for _ in self.anchors])
# xywh -> xyxy
self.resizer = AnchorResize(image_size=image_size, anchors=anchors, interpolation=InterpolationMode.BICUBIC)
self.old_resizer = transforms.Resize(image_size,interpolation=InterpolationMode.BICUBIC)
self.image_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
])
self.tokenizer = tokenizer
def _process_image(self, images):
new_images = []
new_patch_position = []
num_image_mult = []
for image in images:
nocut_image = self.image_transform(self.old_resizer(image)).unsqueeze(0)
image, selected_anchor = self.resizer(image)
image_input = self.image_transform(image) # h,w,3 -> 3,h,w
# rearrange(x,'B C (n1 h) (n2 w) -> (B n1 n2) C h w', n1=self.down_sample[0], n2=self.down_sample[1])
image_input = rearrange(image_input, 'C (num_h h) (num_w w) -> (num_h num_w) C h w', h=self.image_size[0], w=self.image_size[1])
image_input = torch.cat([nocut_image, image_input], dim=0)
anchor = self.anchors[selected_anchor] # w,h
patch_position = torch.cat([
repeat(torch.arange(anchor[0]), 'num_h -> num_h num_w 1', num_w=anchor[1]),
repeat(torch.arange(anchor[1]), 'num_w -> num_h num_w 1', num_h=anchor[0])],dim=2)
patch_position = rearrange(patch_position, 'num_h num_w p-> (num_h num_w) p', p=2) # num_patch, (ph,pw)
patch_position = torch.cat([torch.ones(1,2).long()*self.anchor_max, patch_position], dim=0)
new_images.append(image_input)
new_patch_position.append(patch_position)
num_image_mult.append(patch_position.shape[0])
new_images = torch.cat(new_images,dim=0)
new_patch_position = torch.cat(new_patch_position, dim=0)
return new_images, new_patch_position, num_image_mult
def __call__(self, images=None, messages=None):
assert images is not None
# print(images)
## 1. process images
if not isinstance(images, list):
images = [images]
image_pils = []
for image in images:
if isinstance(image, str):
image = Image.open(image).convert('RGB')
else:
image = image.convert('RGB')
# ic(image.size)
image_pils.append(image)
image_data, patch_position, num_image_mult = self._process_image(image_pils)
## 2. process text
# 2.1 add image ordinal token (e.g. ) before image placeholder <|image|>
image_index = 1 # start from 1
for m in messages:
try:
assert m['role'] in ['USER', 'ASSISTANT']
except Exception as e:
print("Unexpected role: "+m['role']+", only support 'USER' or 'ASSISTANT'")
exit(0)
if m['role'] == 'USER' and self.media_token in m.get('content', ''):
pattern = '|'.join(map(re.escape, [self.media_token]))
text_list = re.split(f'({pattern})', m['content'])
text = ''
for x in text_list:
if x == '<|image|>':
text += '<|image|>'
image_index += 1
else:
text += x
m['content'] = text
if messages[-1]['role'] == 'USER':
messages.append({'role':'ASSISTANT'})
else:
try:
assert messages[-1].get('content', '') == ''
except Exception as e:
print("Unexpected end message: "+str(messages[-1]), "only (role=='USER') or (role=='ASSISTANT' and content=='') are expected.")
exit(0)
# print('after adding img ordinal token: ', messages)
# 2.2 text tokenize
seps = [' ', '']
prompt = ""
for i, m in enumerate(messages):
if 'content' in m:
prompt += m['role'] + ": " + m['content'] + seps[i % 2]
else:
prompt += m['role'] + ":"
ic(prompt)
assert self.media_token in prompt
input_ids = self.tokenizer_token(prompt)
return image_data, patch_position, input_ids
def tokenizer_token(self, prompt):
prompt_chunks = [self.tokenizer(chunk).input_ids if len(chunk) > 0 else [] for chunk in prompt.split(DEFAULT_IMAGE_TOKEN)]
def insert_separator(X, sep):
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
input_ids = []
offset = 0
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == self.tokenizer.bos_token_id:
offset = 1
input_ids.append(prompt_chunks[0][0])
for x in insert_separator(prompt_chunks, [IMAGE_TOKEN_INDEX] * (offset + 1)):
input_ids.extend(x[offset:])
return torch.tensor(input_ids, dtype=torch.long)