lysandre HF staff rwightman HF staff commited on
Commit
f03a795
0 Parent(s):

Duplicate from laion/CLIP-ViT-L-14-laion2B-s32B-b82K

Browse files

Co-authored-by: Ross Wightman <[email protected]>

.gitattributes ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ftz filter=lfs diff=lfs merge=lfs -text
6
+ *.gz filter=lfs diff=lfs merge=lfs -text
7
+ *.h5 filter=lfs diff=lfs merge=lfs -text
8
+ *.joblib filter=lfs diff=lfs merge=lfs -text
9
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
10
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.npy filter=lfs diff=lfs merge=lfs -text
14
+ *.npz filter=lfs diff=lfs merge=lfs -text
15
+ *.onnx filter=lfs diff=lfs merge=lfs -text
16
+ *.ot filter=lfs diff=lfs merge=lfs -text
17
+ *.parquet filter=lfs diff=lfs merge=lfs -text
18
+ *.pb filter=lfs diff=lfs merge=lfs -text
19
+ *.pickle filter=lfs diff=lfs merge=lfs -text
20
+ *.pkl filter=lfs diff=lfs merge=lfs -text
21
+ *.pt filter=lfs diff=lfs merge=lfs -text
22
+ *.pth filter=lfs diff=lfs merge=lfs -text
23
+ *.rar filter=lfs diff=lfs merge=lfs -text
24
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
26
+ *.tflite filter=lfs diff=lfs merge=lfs -text
27
+ *.tgz filter=lfs diff=lfs merge=lfs -text
28
+ *.wasm filter=lfs diff=lfs merge=lfs -text
29
+ *.xz filter=lfs diff=lfs merge=lfs -text
30
+ *.zip filter=lfs diff=lfs merge=lfs -text
31
+ *.zst filter=lfs diff=lfs merge=lfs -text
32
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ widget:
4
+ - src: >-
5
+ https://huggingface.co/datasets/mishig/sample_images/resolve/main/cat-dog-music.png
6
+ candidate_labels: playing music, playing sports
7
+ example_title: Cat & Dog
8
+ duplicated_from: laion/CLIP-ViT-L-14-laion2B-s32B-b82K
9
+ ---
10
+ # Model Card for CLIP ViT-L/14 - LAION-2B
11
+
12
+ # Table of Contents
13
+
14
+ 1. [Model Details](#model-details)
15
+ 2. [Uses](#uses)
16
+ 3. [Training Details](#training-details)
17
+ 4. [Evaluation](#evaluation)
18
+ 5. [Acknowledgements](#acknowledgements)
19
+ 6. [Citation](#citation)
20
+ 7. [How To Get Started With the Model](#how-to-get-started-with-the-model)
21
+
22
+
23
+ # Model Details
24
+
25
+ ## Model Description
26
+
27
+ A CLIP ViT L/14 model trained with the LAION-2B English subset of LAION-5B (https://laion.ai/blog/laion-5b/) using OpenCLIP (https://github.com/mlfoundations/open_clip).
28
+
29
+ Model training ('babysitting') done by Ross Wightman on the [JUWELS Booster](https://apps.fz-juelich.de/jsc/hps/juwels/booster-overview.html) supercomputer. See acknowledgements below.
30
+
31
+ # Uses
32
+
33
+ As per the original [OpenAI CLIP model card](https://github.com/openai/CLIP/blob/d50d76daa670286dd6cacf3bcd80b5e4823fc8e1/model-card.md), this model is intended as a research output for research communities. We hope that this model will enable researchers to better understand and explore zero-shot, arbitrary image classification. We also hope it can be used for interdisciplinary studies of the potential impact of such model.
34
+
35
+ The OpenAI CLIP paper includes a discussion of potential downstream impacts to provide an example for this sort of analysis. Additionally, the LAION-5B blog (https://laion.ai/blog/laion-5b/) and upcoming paper include additional discussion as it relates specifically to the training dataset.
36
+
37
+ ## Direct Use
38
+
39
+ Zero-shot image classification, image and text retrieval, among others.
40
+
41
+ ## Downstream Use
42
+
43
+ Image classification and other image task fine-tuning, linear probe image classification, image generation guiding and conditioning, among others.
44
+
45
+ ## Out-of-Scope Use
46
+
47
+ As per the OpenAI models,
48
+
49
+ **Any** deployed use case of the model - whether commercial or not - is currently out of scope. Non-deployed use cases such as image search in a constrained environment, are also not recommended unless there is thorough in-domain testing of the model with a specific, fixed class taxonomy. This is because our safety assessment demonstrated a high need for task specific testing especially given the variability of CLIP’s performance with different class taxonomies. This makes untested and unconstrained deployment of the model in any use case currently potentially harmful.
50
+
51
+ Certain use cases which would fall under the domain of surveillance and facial recognition are always out-of-scope regardless of performance of the model. This is because the use of artificial intelligence for tasks such as these can be premature currently given the lack of testing norms and checks to ensure its fair use.
52
+
53
+ Since the model has not been purposefully trained in or evaluated on any languages other than English, its use should be limited to English language use cases.
54
+
55
+ Further the above notice, the LAION-5B dataset used in training of these models has additional considerations, see below.
56
+
57
+ # Training Details
58
+
59
+ ## Training Data
60
+
61
+ This model was trained with the 2 Billion sample English subset of LAION-5B (https://laion.ai/blog/laion-5b/).
62
+
63
+ **IMPORTANT NOTE:** The motivation behind dataset creation is to democratize research and experimentation around large-scale multi-modal model training and handling of uncurated, large-scale datasets crawled from publically available internet. Our recommendation is therefore to use the dataset for research purposes. Be aware that this large-scale dataset is uncurated. Keep in mind that the uncurated nature of the dataset means that collected links may lead to strongly discomforting and disturbing content for a human viewer. Therefore, please use the demo links with caution and at your own risk. It is possible to extract a “safe” subset by filtering out samples based on the safety tags (using a customized trained NSFW classifier that we built). While this strongly reduces the chance for encountering potentially harmful content when viewing, we cannot entirely exclude the possibility for harmful content being still present in safe mode, so that the warning holds also there. We think that providing the dataset openly to broad research and other interested communities will allow for transparent investigation of benefits that come along with training large-scale models as well as pitfalls and dangers that may stay unreported or unnoticed when working with closed large datasets that remain restricted to a small community. Providing our dataset openly, we however do not recommend using it for creating ready-to-go industrial products, as the basic research about general properties and safety of such large-scale models, which we would like to encourage with this release, is still in progress.
64
+
65
+ ## Training Procedure
66
+
67
+ The model was trained on 384 A100 GPUs using 200M sample 'virtual' epochs where dataset shards were sampled with replacement. The model was trained with 160 virtual epochs for a total of 32B samples seen.
68
+
69
+ The first 68 epochs were trained with float16 AMP, global batch size 79K (208 per GPU). Initially running to epoch 75, where the loss spiked and training failed with NaN.
70
+
71
+ Romain Beaumont was training H/14 and g/14 models at the same time on Stability cluster and hit similar instabilities. Collectively we tried restarts with,
72
+ * different dataset shuffle seed
73
+ * different LR
74
+ * gradient clipping
75
+ * modifications to the architecture
76
+ * Norm modifications (stable norm for final, post embed norm for text transformer) as per https://github.com/mlfoundations/open_clip/pull/153 thanks to Phil Wang
77
+ * Extra attention block norms ala Normformer (https://arxiv.org/abs/2110.09456)
78
+ * Scaled cosine attention ala Swin-V2 (https://arxiv.org/abs/2111.09883)
79
+
80
+ None of the above ended up working. Most blew up within the same epoch as original, with the exception of architecture mods.
81
+ * Normformer mods signifcantly altered the network such that resuming did not quickly converge to previous performance, this was abandoned but might be worth trying from start.
82
+ * Scaled cosine attn initially looked promising and lasted until epoch 90 before loss suddenly increased and appeared to remain 'stuck'.
83
+
84
+ In the end, restarting at epoch 69 with `float32` precision solved all instabilities and training continued from there with global batch size 86k (224 per GPU). On A100 GPUs, `float32` had a minimal impact on the throughput once `tf32` matmuls were enabled in PyTorch. Approximately 10% slower than `float16 AMP`. Romain similary changed the precision but ended up using `bfloat16 AMP` to resolve issues.
85
+
86
+ ### Slum Script
87
+
88
+ ```
89
+ #SBATCH --nodes=96
90
+ #SBATCH --gres=gpu:4
91
+ #SBATCH --ntasks-per-node=4
92
+ #SBATCH --cpus-per-task=6
93
+ #SBATCH --wait-all-nodes=1
94
+ #SBATCH --job-name=open_clip_laion2b
95
+
96
+ # load low-level libraries
97
+ ml purge
98
+ source /conda/bin/activate pytorch-112
99
+
100
+ export NCCL_ASYNC_ERROR_HANDLING=1
101
+ export CUDA_VISIBLE_DEVICES=0,1,2,3
102
+ export MASTER_PORT=12802
103
+
104
+ ### get the first node name as master address - customized for vgg slurm
105
+ ### e.g. master(gnodee[2-5],gnoded1) == gnodee2
106
+ echo "NODELIST="${SLURM_NODELIST}
107
+ master_addr=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
108
+ export MASTER_ADDR=$master_addr"i"
109
+ echo "MASTER_ADDR="$MASTER_ADDR
110
+
111
+ cd /home/me/open_clip
112
+ export PYTHONPATH="$PYTHONPATH:$PWD/src"
113
+
114
+ srun --cpu_bind=none,v --accel-bind=gn python -u src/training/main.py \
115
+ --save-frequency 1 \
116
+ --zeroshot-frequency 1 \
117
+ --train-data="/data/laion2B-en/{00000..23295}.tar" \
118
+ --train-num-samples=200000000 \
119
+ --warmup 10000 \
120
+ --lr "1e-3" \
121
+ --batch-size=224 \
122
+ --epochs=160 \
123
+ --workers=6 \
124
+ --model ViT-L-14 \
125
+ --name "L14-laion2B" \
126
+ --report-to "tensorboard" \
127
+ --seed 0 \
128
+ --precision 'fp32' \
129
+ --ddp-static-graph \
130
+ --local-loss \
131
+ --dataset-resampled \
132
+ --gather-with-grad \
133
+ --grad-checkpointing
134
+ ```
135
+
136
+ # Evaluation
137
+
138
+ Evaluation done with code in the [LAION CLIP Benchmark suite](https://github.com/LAION-AI/CLIP_benchmark).
139
+
140
+ ## Testing Data, Factors & Metrics
141
+
142
+ ### Testing Data
143
+
144
+ The testing is performed with VTAB+ (A combination of VTAB (https://arxiv.org/abs/1910.04867) w/ additional robustness datasets) for classification and COCO and Flickr for retrieval.
145
+
146
+ **TODO** - more detail
147
+
148
+ ## Results
149
+
150
+ The model achieves a 75.3 zero-shot top-1 accuracy on ImageNet-1k.
151
+
152
+ An initial round of benchmarks have been performed on a wider range of datasets, currently viewable at https://github.com/LAION-AI/CLIP_benchmark/blob/main/benchmark/results.ipynb
153
+
154
+ **TODO** - create table for just this model's metrics.
155
+
156
+ # Acknowledgements
157
+
158
+ Acknowledging the Gauss Centre for Supercomputing e.V. (http://gauss-centre.eu) for funding this part of work by providing computing time through the John von Neumann Institute for Computing (NIC) on the GCS Supercomputer JUWELS Booster at Jülich Supercomputing Centre (JSC).
159
+
160
+ # Citation
161
+
162
+ **BibTeX:**
163
+
164
+ In addition to forthcoming LAION-5B (https://laion.ai/blog/laion-5b/) paper, please cite:
165
+
166
+ OpenAI CLIP paper
167
+ ```
168
+ @inproceedings{Radford2021LearningTV,
169
+ title={Learning Transferable Visual Models From Natural Language Supervision},
170
+ author={Alec Radford and Jong Wook Kim and Chris Hallacy and A. Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever},
171
+ booktitle={ICML},
172
+ year={2021}
173
+ }
174
+ ```
175
+
176
+ OpenCLIP software
177
+ ```
178
+ @software{ilharco_gabriel_2021_5143773,
179
+ author = {Ilharco, Gabriel and
180
+ Wortsman, Mitchell and
181
+ Wightman, Ross and
182
+ Gordon, Cade and
183
+ Carlini, Nicholas and
184
+ Taori, Rohan and
185
+ Dave, Achal and
186
+ Shankar, Vaishaal and
187
+ Namkoong, Hongseok and
188
+ Miller, John and
189
+ Hajishirzi, Hannaneh and
190
+ Farhadi, Ali and
191
+ Schmidt, Ludwig},
192
+ title = {OpenCLIP},
193
+ month = jul,
194
+ year = 2021,
195
+ note = {If you use this software, please cite it as below.},
196
+ publisher = {Zenodo},
197
+ version = {0.1},
198
+ doi = {10.5281/zenodo.5143773},
199
+ url = {https://doi.org/10.5281/zenodo.5143773}
200
+ }
201
+ ```
202
+
203
+ # How to Get Started with the Model
204
+
205
+ Use the code below to get started with the model.
206
+
207
+ ** TODO ** - Hugging Face transformers, OpenCLIP, and timm getting started snippets
config.json ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "CLIPModel"
4
+ ],
5
+ "initializer_factor": 1.0,
6
+ "logit_scale_init_value": 2.6592,
7
+ "model_type": "clip",
8
+ "projection_dim": 768,
9
+ "text_config": {
10
+ "_name_or_path": "",
11
+ "add_cross_attention": false,
12
+ "architectures": null,
13
+ "attention_dropout": 0.0,
14
+ "bad_words_ids": null,
15
+ "bos_token_id": 0,
16
+ "chunk_size_feed_forward": 0,
17
+ "cross_attention_hidden_size": null,
18
+ "decoder_start_token_id": null,
19
+ "diversity_penalty": 0.0,
20
+ "do_sample": false,
21
+ "dropout": 0.0,
22
+ "early_stopping": false,
23
+ "encoder_no_repeat_ngram_size": 0,
24
+ "eos_token_id": 2,
25
+ "exponential_decay_length_penalty": null,
26
+ "finetuning_task": null,
27
+ "forced_bos_token_id": null,
28
+ "forced_eos_token_id": null,
29
+ "hidden_act": "gelu",
30
+ "hidden_size": 768,
31
+ "id2label": {
32
+ "0": "LABEL_0",
33
+ "1": "LABEL_1"
34
+ },
35
+ "initializer_factor": 1.0,
36
+ "initializer_range": 0.02,
37
+ "intermediate_size": 3072,
38
+ "is_decoder": false,
39
+ "is_encoder_decoder": false,
40
+ "label2id": {
41
+ "LABEL_0": 0,
42
+ "LABEL_1": 1
43
+ },
44
+ "layer_norm_eps": 1e-05,
45
+ "length_penalty": 1.0,
46
+ "max_length": 20,
47
+ "max_position_embeddings": 77,
48
+ "min_length": 0,
49
+ "model_type": "clip_text_model",
50
+ "no_repeat_ngram_size": 0,
51
+ "num_attention_heads": 12,
52
+ "num_beam_groups": 1,
53
+ "num_beams": 1,
54
+ "num_hidden_layers": 12,
55
+ "num_return_sequences": 1,
56
+ "output_attentions": false,
57
+ "output_hidden_states": false,
58
+ "output_scores": false,
59
+ "pad_token_id": 1,
60
+ "prefix": null,
61
+ "problem_type": null,
62
+ "pruned_heads": {},
63
+ "remove_invalid_values": false,
64
+ "repetition_penalty": 1.0,
65
+ "return_dict": true,
66
+ "return_dict_in_generate": false,
67
+ "sep_token_id": null,
68
+ "task_specific_params": null,
69
+ "temperature": 1.0,
70
+ "tf_legacy_loss": false,
71
+ "tie_encoder_decoder": false,
72
+ "tie_word_embeddings": true,
73
+ "tokenizer_class": null,
74
+ "top_k": 50,
75
+ "top_p": 1.0,
76
+ "torch_dtype": null,
77
+ "torchscript": false,
78
+ "transformers_version": "4.21.3",
79
+ "typical_p": 1.0,
80
+ "use_bfloat16": false,
81
+ "vocab_size": 49408
82
+ },
83
+ "text_config_dict": {
84
+ "hidden_act": "gelu",
85
+ "hidden_size": 768,
86
+ "intermediate_size": 3072,
87
+ "num_attention_heads": 12
88
+ },
89
+ "torch_dtype": "float32",
90
+ "transformers_version": null,
91
+ "vision_config": {
92
+ "_name_or_path": "",
93
+ "add_cross_attention": false,
94
+ "architectures": null,
95
+ "attention_dropout": 0.0,
96
+ "bad_words_ids": null,
97
+ "bos_token_id": null,
98
+ "chunk_size_feed_forward": 0,
99
+ "cross_attention_hidden_size": null,
100
+ "decoder_start_token_id": null,
101
+ "diversity_penalty": 0.0,
102
+ "do_sample": false,
103
+ "dropout": 0.0,
104
+ "early_stopping": false,
105
+ "encoder_no_repeat_ngram_size": 0,
106
+ "eos_token_id": null,
107
+ "exponential_decay_length_penalty": null,
108
+ "finetuning_task": null,
109
+ "forced_bos_token_id": null,
110
+ "forced_eos_token_id": null,
111
+ "hidden_act": "gelu",
112
+ "hidden_size": 1024,
113
+ "id2label": {
114
+ "0": "LABEL_0",
115
+ "1": "LABEL_1"
116
+ },
117
+ "image_size": 224,
118
+ "initializer_factor": 1.0,
119
+ "initializer_range": 0.02,
120
+ "intermediate_size": 4096,
121
+ "is_decoder": false,
122
+ "is_encoder_decoder": false,
123
+ "label2id": {
124
+ "LABEL_0": 0,
125
+ "LABEL_1": 1
126
+ },
127
+ "layer_norm_eps": 1e-05,
128
+ "length_penalty": 1.0,
129
+ "max_length": 20,
130
+ "min_length": 0,
131
+ "model_type": "clip_vision_model",
132
+ "no_repeat_ngram_size": 0,
133
+ "num_attention_heads": 16,
134
+ "num_beam_groups": 1,
135
+ "num_beams": 1,
136
+ "num_channels": 3,
137
+ "num_hidden_layers": 24,
138
+ "num_return_sequences": 1,
139
+ "output_attentions": false,
140
+ "output_hidden_states": false,
141
+ "output_scores": false,
142
+ "pad_token_id": null,
143
+ "patch_size": 14,
144
+ "prefix": null,
145
+ "problem_type": null,
146
+ "pruned_heads": {},
147
+ "remove_invalid_values": false,
148
+ "repetition_penalty": 1.0,
149
+ "return_dict": true,
150
+ "return_dict_in_generate": false,
151
+ "sep_token_id": null,
152
+ "task_specific_params": null,
153
+ "temperature": 1.0,
154
+ "tf_legacy_loss": false,
155
+ "tie_encoder_decoder": false,
156
+ "tie_word_embeddings": true,
157
+ "tokenizer_class": null,
158
+ "top_k": 50,
159
+ "top_p": 1.0,
160
+ "torch_dtype": null,
161
+ "torchscript": false,
162
+ "transformers_version": "4.21.3",
163
+ "typical_p": 1.0,
164
+ "use_bfloat16": false
165
+ },
166
+ "vision_config_dict": {
167
+ "hidden_act": "gelu",
168
+ "hidden_size": 1024,
169
+ "intermediate_size": 4096,
170
+ "num_attention_heads": 16,
171
+ "num_hidden_layers": 24,
172
+ "patch_size": 14
173
+ }
174
+ }
open_clip_pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ddb47339f44e4fd9cace3d3960d38af1b51a25857440cfae90afc44706d7e2b
3
+ size 1710631365
preprocessor_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": 224,
3
+ "do_center_crop": true,
4
+ "do_normalize": true,
5
+ "do_resize": true,
6
+ "feature_extractor_type": "CLIPFeatureExtractor",
7
+ "image_mean": [
8
+ 0.5,
9
+ 0.5,
10
+ 0.5
11
+ ],
12
+ "image_std": [
13
+ 0.5,
14
+ 0.5,
15
+ 0.5
16
+ ],
17
+ "resample": 3,
18
+ "size": 224
19
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45a6d8e04e46cfc7f55ee74a62a4ef04c95b9ef005981f9ccee19af8906ab181
3
+ size 1710660257
runs/events.out.tfevents.1660090697.jwb0360.juwels.18885.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf2f8838ec8c1aca3cf71dc86ec829b86bc786c915a80b561a68b2d61a129325
3
+ size 22840
runs/events.out.tfevents.1660150065.jwb0066.juwels.24737.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35d962fa7cd625083164888b2e38591ada23dd21d3f0f2ec608c45685cb9cd87
3
+ size 116880
runs/events.out.tfevents.1660278820.jwb0066.juwels.20307.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21e58767af271ccb863faa712defa670214aef3f2725e0789e7e7261dc66d6f2
3
+ size 112444
runs/events.out.tfevents.1660368981.jwb0069.juwels.12098.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2185da37e3b9c6d6203252cbd722440b2f1ad0486767aa433ac9ca53f9103c0
3
+ size 115351
runs/events.out.tfevents.1660507060.jwb0038.juwels.22553.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:294b98afa9a1a2c586d96e8529fc41d9a8d08ced0646d36a9480661c2232227c
3
+ size 114382
runs/events.out.tfevents.1660660016.jwb0075.juwels.30448.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:015fbd1aaf182b120309513becc4a8553ba0f1fc98143ac925a3d97e419971bb
3
+ size 112767
runs/events.out.tfevents.1660757289.jwb0031.juwels.28174.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b88d4d36282d2a9f4aa7371bdba738063c22d7881d59440b85812bbc0ae108c7
3
+ size 86604
runs/events.out.tfevents.1662171151.jwb0026.juwels.11856.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab81e18ee28996ac9c5bf2e02ea4b59a6541bcd053aed7477f1adcfd9f8b956a
3
+ size 99847
runs/events.out.tfevents.1662256342.jwb0043.juwels.17228.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:366825801f79123b85adb73b076e75f04748409982a9ee5591b31429255f0b08
3
+ size 97263
runs/events.out.tfevents.1662354550.jwb0066.juwels.12897.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8bb8783d4ee1a0852061fe6f4849f14c869aa3ded4655b25afaaa6084bc8816c
3
+ size 94679
runs/events.out.tfevents.1662437430.jwb0066.juwels.25458.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb64a95e3f8f5181d328a98329c062ce47823338e428317be0b090e32eef253d
3
+ size 75299
runs/events.out.tfevents.1662584587.jwb0929.juwels.26132.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b7c7b280a49e1f22c8dd039b86d598e81410d3a087f63e880d1130565d7176a
3
+ size 98878
runs/events.out.tfevents.1662678523.jwb0577.juwels.25329.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d965d500d6b8ed7ee743436b5ca8da45633613e324bc9fe32c927d258465d04f
3
+ size 96294
runs/events.out.tfevents.1662777391.jwb0093.juwels.22511.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51f98864e74674d17187bb088fd07277b36afdce4a214b1461386cf68af206a9
3
+ size 8761
runs/events.out.tfevents.1662784958.jwb0093.juwels.2143.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a69693ecba0c1de5e9e0d82df81992cfbc816b2873fafb0b1da6753db27d332b
3
+ size 96294
runs/events.out.tfevents.1662923022.jwb0354.juwels.8816.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f87516e52bc22898c7aae47bff9e030c67d3c3043dc007ee19551fb2f8cebd9
3
+ size 98232
runs/events.out.tfevents.1663040222.jwb0024.juwels.20189.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c4cbd6f93ad83f154e3c624e7d58ab950c62e10b5d87bcbaa7e8d8317ff0d60
3
+ size 8115
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": {"content": "<|startoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "pad_token": "<|endoftext|>"}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "bos_token": {"content": "<|startoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "pad_token": "<|endoftext|>", "add_prefix_space": false, "errors": "replace", "do_lower_case": true, "name_or_path": "./clip_ViT_B_32/"}
vocab.json ADDED
The diff for this file is too large to render. See raw diff