Upload distilbert-imdb-training.ipynb
Browse files- distilbert-imdb-training.ipynb +292 -0
distilbert-imdb-training.ipynb
ADDED
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"# Train IMDb Classifier\n",
|
8 |
+
"> Train a IMDb classifier with DistilBERT."
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": null,
|
14 |
+
"metadata": {},
|
15 |
+
"outputs": [],
|
16 |
+
"source": [
|
17 |
+
"!huggingface-cli login"
|
18 |
+
]
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"cell_type": "markdown",
|
22 |
+
"metadata": {},
|
23 |
+
"source": [
|
24 |
+
"## Load IMDb dataset"
|
25 |
+
]
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"cell_type": "code",
|
29 |
+
"execution_count": null,
|
30 |
+
"metadata": {},
|
31 |
+
"outputs": [],
|
32 |
+
"source": [
|
33 |
+
"from datasets import load_dataset, load_metric"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"cell_type": "code",
|
38 |
+
"execution_count": null,
|
39 |
+
"metadata": {},
|
40 |
+
"outputs": [],
|
41 |
+
"source": [
|
42 |
+
"ds = load_dataset(\"imdb\")"
|
43 |
+
]
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"cell_type": "code",
|
47 |
+
"execution_count": null,
|
48 |
+
"metadata": {},
|
49 |
+
"outputs": [
|
50 |
+
{
|
51 |
+
"data": {
|
52 |
+
"text/plain": [
|
53 |
+
"DatasetDict({\n",
|
54 |
+
" train: Dataset({\n",
|
55 |
+
" features: ['text', 'label'],\n",
|
56 |
+
" num_rows: 25000\n",
|
57 |
+
" })\n",
|
58 |
+
" test: Dataset({\n",
|
59 |
+
" features: ['text', 'label'],\n",
|
60 |
+
" num_rows: 25000\n",
|
61 |
+
" })\n",
|
62 |
+
" unsupervised: Dataset({\n",
|
63 |
+
" features: ['text', 'label'],\n",
|
64 |
+
" num_rows: 50000\n",
|
65 |
+
" })\n",
|
66 |
+
"})"
|
67 |
+
]
|
68 |
+
},
|
69 |
+
"execution_count": null,
|
70 |
+
"metadata": {},
|
71 |
+
"output_type": "execute_result"
|
72 |
+
}
|
73 |
+
],
|
74 |
+
"source": [
|
75 |
+
"ds"
|
76 |
+
]
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"cell_type": "code",
|
80 |
+
"execution_count": null,
|
81 |
+
"metadata": {},
|
82 |
+
"outputs": [
|
83 |
+
{
|
84 |
+
"data": {
|
85 |
+
"text/plain": [
|
86 |
+
"{'label': ClassLabel(num_classes=2, names=['neg', 'pos'], names_file=None, id=None),\n",
|
87 |
+
" 'text': Value(dtype='string', id=None)}"
|
88 |
+
]
|
89 |
+
},
|
90 |
+
"execution_count": null,
|
91 |
+
"metadata": {},
|
92 |
+
"output_type": "execute_result"
|
93 |
+
}
|
94 |
+
],
|
95 |
+
"source": [
|
96 |
+
"ds['train'].features"
|
97 |
+
]
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"cell_type": "markdown",
|
101 |
+
"metadata": {},
|
102 |
+
"source": [
|
103 |
+
"## Load Pretrained DistilBERT"
|
104 |
+
]
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"cell_type": "code",
|
108 |
+
"execution_count": null,
|
109 |
+
"metadata": {},
|
110 |
+
"outputs": [],
|
111 |
+
"source": [
|
112 |
+
"from transformers import AutoModelForSequenceClassification, AutoTokenizer\n",
|
113 |
+
"\n",
|
114 |
+
"model_name = \"distilbert-base-uncased\"\n",
|
115 |
+
"model = AutoModelForSequenceClassification.from_pretrained(model_name)\n",
|
116 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name)"
|
117 |
+
]
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"cell_type": "markdown",
|
121 |
+
"metadata": {},
|
122 |
+
"source": [
|
123 |
+
"## Prepocess Data"
|
124 |
+
]
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"cell_type": "code",
|
128 |
+
"execution_count": null,
|
129 |
+
"metadata": {},
|
130 |
+
"outputs": [
|
131 |
+
{
|
132 |
+
"data": {
|
133 |
+
"application/vnd.jupyter.widget-view+json": {
|
134 |
+
"model_id": "6ddef2e0d4a04e12ad7513950158236c",
|
135 |
+
"version_major": 2,
|
136 |
+
"version_minor": 0
|
137 |
+
},
|
138 |
+
"text/plain": [
|
139 |
+
" 0%| | 0/25 [00:00<?, ?ba/s]"
|
140 |
+
]
|
141 |
+
},
|
142 |
+
"metadata": {},
|
143 |
+
"output_type": "display_data"
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"data": {
|
147 |
+
"application/vnd.jupyter.widget-view+json": {
|
148 |
+
"model_id": "4b1392a042614a1682b6f62642262446",
|
149 |
+
"version_major": 2,
|
150 |
+
"version_minor": 0
|
151 |
+
},
|
152 |
+
"text/plain": [
|
153 |
+
" 0%| | 0/25 [00:00<?, ?ba/s]"
|
154 |
+
]
|
155 |
+
},
|
156 |
+
"metadata": {},
|
157 |
+
"output_type": "display_data"
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"data": {
|
161 |
+
"application/vnd.jupyter.widget-view+json": {
|
162 |
+
"model_id": "a7f130baafab4493bfe185fa7f3a9fe9",
|
163 |
+
"version_major": 2,
|
164 |
+
"version_minor": 0
|
165 |
+
},
|
166 |
+
"text/plain": [
|
167 |
+
" 0%| | 0/50 [00:00<?, ?ba/s]"
|
168 |
+
]
|
169 |
+
},
|
170 |
+
"metadata": {},
|
171 |
+
"output_type": "display_data"
|
172 |
+
}
|
173 |
+
],
|
174 |
+
"source": [
|
175 |
+
"def tokenize(examples):\n",
|
176 |
+
" outputs = tokenizer(examples['text'], truncation=True)\n",
|
177 |
+
" return outputs\n",
|
178 |
+
"\n",
|
179 |
+
"tokenized_ds = ds.map(tokenize, batched=True)"
|
180 |
+
]
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"cell_type": "markdown",
|
184 |
+
"metadata": {},
|
185 |
+
"source": [
|
186 |
+
"## Prepare Trainer"
|
187 |
+
]
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"cell_type": "code",
|
191 |
+
"execution_count": null,
|
192 |
+
"metadata": {},
|
193 |
+
"outputs": [],
|
194 |
+
"source": [
|
195 |
+
"from transformers import TrainingArguments, Trainer, DataCollatorWithPadding"
|
196 |
+
]
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"cell_type": "code",
|
200 |
+
"execution_count": null,
|
201 |
+
"metadata": {},
|
202 |
+
"outputs": [],
|
203 |
+
"source": [
|
204 |
+
"import numpy as np\n",
|
205 |
+
"\n",
|
206 |
+
"def compute_metrics(eval_preds):\n",
|
207 |
+
" metric = load_metric(\"accuracy\")\n",
|
208 |
+
" logits, labels = eval_preds\n",
|
209 |
+
" predictions = np.argmax(logits, axis=-1)\n",
|
210 |
+
" return metric.compute(predictions=predictions, references=labels)"
|
211 |
+
]
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"cell_type": "code",
|
215 |
+
"execution_count": null,
|
216 |
+
"metadata": {},
|
217 |
+
"outputs": [],
|
218 |
+
"source": [
|
219 |
+
"training_args = TrainingArguments(num_train_epochs=1,\n",
|
220 |
+
" output_dir=\"distilbert-imdb\",\n",
|
221 |
+
" push_to_hub=True,\n",
|
222 |
+
" per_device_train_batch_size=16,\n",
|
223 |
+
" per_device_eval_batch_size=16,\n",
|
224 |
+
" evaluation_strategy=\"epoch\")"
|
225 |
+
]
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"cell_type": "code",
|
229 |
+
"execution_count": null,
|
230 |
+
"metadata": {},
|
231 |
+
"outputs": [],
|
232 |
+
"source": [
|
233 |
+
"data_collator = DataCollatorWithPadding(tokenizer)"
|
234 |
+
]
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"cell_type": "code",
|
238 |
+
"execution_count": null,
|
239 |
+
"metadata": {},
|
240 |
+
"outputs": [],
|
241 |
+
"source": [
|
242 |
+
"trainer = Trainer(model=model, tokenizer=tokenizer,\n",
|
243 |
+
" data_collator=data_collator,\n",
|
244 |
+
" args=training_args,\n",
|
245 |
+
" train_dataset=tokenized_ds[\"train\"],\n",
|
246 |
+
" eval_dataset=tokenized_ds[\"test\"], \n",
|
247 |
+
" compute_metrics=compute_metrics)"
|
248 |
+
]
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"cell_type": "markdown",
|
252 |
+
"metadata": {},
|
253 |
+
"source": [
|
254 |
+
"## Train Model and Push to Hub"
|
255 |
+
]
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"cell_type": "code",
|
259 |
+
"execution_count": null,
|
260 |
+
"metadata": {},
|
261 |
+
"outputs": [],
|
262 |
+
"source": [
|
263 |
+
"trainer.train()"
|
264 |
+
]
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"cell_type": "code",
|
268 |
+
"execution_count": null,
|
269 |
+
"metadata": {},
|
270 |
+
"outputs": [],
|
271 |
+
"source": [
|
272 |
+
"trainer.push_to_hub()"
|
273 |
+
]
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"cell_type": "code",
|
277 |
+
"execution_count": null,
|
278 |
+
"metadata": {},
|
279 |
+
"outputs": [],
|
280 |
+
"source": []
|
281 |
+
}
|
282 |
+
],
|
283 |
+
"metadata": {
|
284 |
+
"kernelspec": {
|
285 |
+
"display_name": "Python 3 (ipykernel)",
|
286 |
+
"language": "python",
|
287 |
+
"name": "python3"
|
288 |
+
}
|
289 |
+
},
|
290 |
+
"nbformat": 4,
|
291 |
+
"nbformat_minor": 4
|
292 |
+
}
|