Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- 'no'
|
4 |
+
- nb
|
5 |
+
- nn
|
6 |
+
inference: false
|
7 |
+
tags:
|
8 |
+
- T5
|
9 |
+
- NorT5
|
10 |
+
- Norwegian
|
11 |
+
- encoder-decoder
|
12 |
+
license: cc-by-4.0
|
13 |
+
---
|
14 |
+
|
15 |
+
# NorT5 x-small
|
16 |
+
|
17 |
+
|
18 |
+
## Other sizes:
|
19 |
+
- [NorBERT 3 xs (15M)](https://huggingface.co/ltg/nort5-xs)
|
20 |
+
- [NorBERT 3 small (40M)](https://huggingface.co/ltg/nort5-small)
|
21 |
+
- [NorBERT 3 base (123M)](https://huggingface.co/ltg/nort5-base)
|
22 |
+
- [NorBERT 3 large (323M)](https://huggingface.co/ltg/nort5-large)
|
23 |
+
|
24 |
+
|
25 |
+
## Example usage
|
26 |
+
|
27 |
+
This model currently needs a custom wrapper from `modeling_nort5.py`. Then you can use it like this:
|
28 |
+
|
29 |
+
```python
|
30 |
+
import torch
|
31 |
+
from transformers import AutoTokenizer
|
32 |
+
from modeling_norbert import NorT5ForConditionalGeneration
|
33 |
+
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained("path/to/folder")
|
35 |
+
t5 = NorT5ForConditionalGeneration.from_pretrained("path/to/folder")
|
36 |
+
|
37 |
+
|
38 |
+
# MASKED LANGUAGE MODELING
|
39 |
+
|
40 |
+
sentence = "Brukseksempel: Elektrisk oppvarming. Definisjonen på ordet oppvarming er[MASK_0]."
|
41 |
+
encoding = tokenizer(sentence)
|
42 |
+
|
43 |
+
input_tensor = torch.tensor([encoding.input_ids])
|
44 |
+
output_tensor = model.generate(input_tensor, decoder_start_token_id=7, eos_token_id=8)
|
45 |
+
tokenizer.decode(output_tensor.squeeze(), skip_special_tokens=True)
|
46 |
+
|
47 |
+
# should output: å varme opp
|
48 |
+
|
49 |
+
|
50 |
+
# PREFIX LANGUAGE MODELING
|
51 |
+
# you need to finetune this model or use `nort5-{size}-lm` model, which is finetuned on prefix language modeling
|
52 |
+
|
53 |
+
sentence = "Brukseksempel: Elektrisk oppvarming. Definisjonen på ordet oppvarming er (Wikipedia) "
|
54 |
+
encoding = tokenizer(sentence)
|
55 |
+
|
56 |
+
input_tensor = torch.tensor([encoding.input_ids])
|
57 |
+
output_tensor = model.generate(input_tensor, max_new_tokens=50, num_beams=4, do_sample=False)
|
58 |
+
tokenizer.decode(output_tensor.squeeze())
|
59 |
+
|
60 |
+
# should output: [BOS]ˈoppvarming, det vil si at det skjer en endring i temperaturen i et medium, f.eks. en ovn eller en radiator, slik at den blir varmere eller kaldere, eller at den blir varmere eller kaldere, eller at den blir
|
61 |
+
```
|