{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79891c3e3640>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79891c3e36d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79891c3e3760>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79891c3e37f0>", "_build": "<function ActorCriticPolicy._build at 0x79891c3e3880>", "forward": "<function ActorCriticPolicy.forward at 0x79891c3e3910>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79891c3e39a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79891c3e3a30>", "_predict": "<function ActorCriticPolicy._predict at 0x79891c3e3ac0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79891c3e3b50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79891c3e3be0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79891c3e3c70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79891c386600>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1726150738421928317, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJMMOj7zGzU/hp42vpRyxb6Aq5A9Q/cePQAAAAAAAAAAoD8EPp+LJz8miQ2+j8q+vm0sqzzCbIW9AAAAAAAAAABTa20+fxsbP4Bv6L06QLy+apDKPX388L0AAAAAAAAAAICkuz56SYw/XaWePizo2L6xZ+0+VD0jvgAAAAAAAAAAGvUJPfJYHT77Yiq+8BClvnOnm72OAQc9AAAAAAAAAABNYwc9Eb8fPqvrQ70hM5q+vWBKu0ZV+jsAAAAAAAAAAJrJWbshWsE9Plp7vUTxdL4poqy91AmCvQAAAAAAAAAAmqXlu43wUT+InlO9EufSvm1AxLtFJOI9AAAAAAAAAADmQge+LCPfPupKFT6VrJC+ny23vDSotD0AAAAAAAAAAGanbr0Kobw/m15avnSRVL6/tYw8Wn+MvQAAAAAAAAAALeUOvp7erD9SVdK+cJ/1vlvzUr7tEai+AAAAAAAAAAB6FD++RIshPpJmOj7Ts4C+3BsKPSPo+T0AAAAAAAAAAGa6WD5PzSE/KBmYvo4z0r7XrsO85lQ6vQAAAAAAAAAAJkCvPZ/w7T5jViY9wkChvjxoJj3So6S9AAAAAAAAAADN+tI8TFsTPuLB+L0JN4e+kDIGvcbQArwAAAAAAAAAAJrcrrzYI9E9SUSPPGt9O77HcBG9lrq6vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGoz4YaYNSMAWyUTQABjAF0lEdAlXEqur6tT3V9lChoBkdAcOCPq9oN/mgHTQ8BaAhHQJVxmMcZLqV1fZQoaAZHQHA5sir1dxBoB00XAWgIR0CVcptMPBi1dX2UKGgGR0BybPdxhlUZaAdNGQFoCEdAlXLL5IpYtHV9lChoBkdAcoxRQ79ycWgHS/xoCEdAlXXFEd/8VHV9lChoBkdAbQ594NZvDWgHTR0BaAhHQJV2HvAoG6h1fZQoaAZHQHBMsqJ/G2loB00gAWgIR0CVdlqSowVTdX2UKGgGR0BwjIe6qbSaaAdL4mgIR0CVdySr5qM4dX2UKGgGR0Bs1tpyp71JaAdNCAFoCEdAlXeMijcmB3V9lChoBkdAcHGEMLF4s2gHTRkBaAhHQJV361gH/tJ1fZQoaAZHQHI3OlO45LhoB01AAWgIR0CVeJ+AmReUdX2UKGgGR0BwLnwUg0TDaAdNGAFoCEdAlXjCROk+HXV9lChoBkdAcoWh3qzJIWgHS9RoCEdAlXknqu8sc3V9lChoBkdAcFpFXaJyhmgHS/9oCEdAlXmOVPepGXV9lChoBkdAcVRGHHmzSmgHTR0BaAhHQJV5noOhCdB1fZQoaAZHQHKeliay8jBoB00GAWgIR0CVebE1l5GCdX2UKGgGR0BxQKZrpJPJaAdL5WgIR0CVeeiKR+z/dX2UKGgGR0Bwt31AZ88caAdNVAFoCEdAlXolRLsa9HV9lChoBkdAcPYd1uBMBmgHTQoBaAhHQJV7jgTAWSF1fZQoaAZHQHAFhGhEjPhoB00ZAWgIR0CVe9Qsf7rLdX2UKGgGR0Bxp1nIyTIOaAdNDgFoCEdAlX3+X3QD3nV9lChoBkdAcV0eIl+mWWgHS/1oCEdAlX4q6vq1PXV9lChoBkdAciNt0FKTS2gHTSgBaAhHQJV/CDjBEa51fZQoaAZHQHFWCcTakARoB00EAWgIR0CVfy0rbxmTdX2UKGgGR0Bxd7sMRYigaAdNQQFoCEdAlX99M495hXV9lChoBkdAcQg8Gs3hoGgHTSEBaAhHQJV/ujUNKAd1fZQoaAZHQHAHdCmdiDxoB00aAWgIR0CVgJIWP91mdX2UKGgGR0ByYaJDVpbmaAdNIQFoCEdAlYFfxc3VC3V9lChoBkdAcMHUuctoSWgHTRABaAhHQJWBeZmZmZp1fZQoaAZHQG3pr1mJ3xFoB00fAWgIR0CVgcLwWnCPdX2UKGgGR0BxcioVEd/8aAdNKQFoCEdAlYIZCv5gxHV9lChoBkdAbbG9jgAIY2gHTRMBaAhHQJWCIkKNQ0p1fZQoaAZHQHEIyEpRXOpoB01VAWgIR0CVgmm9g4OudX2UKGgGR0BvutQ0oBq9aAdL/WgIR0CVgw/hl18tdX2UKGgGR0By4ZwT/Q0GaAdNQQFoCEdAlYMQhGH58HV9lChoBkdAbobAYYR/VmgHTSABaAhHQJWEJ17pmmN1fZQoaAZHQHEsEYTCcgBoB0v1aAhHQJWFJe/pMYd1fZQoaAZHQHOGk9QoCuFoB0vsaAhHQJWFuZuyeI51fZQoaAZHQHD8iKekHlhoB00eAWgIR0CVhjz+3pfQdX2UKGgGR0BxQ32VVxS6aAdNHAFoCEdAlZffNqxkd3V9lChoBkdAceKwaR6ni2gHTS8BaAhHQJWY/xc3VCp1fZQoaAZHQHInI7/4qPRoB00yAWgIR0CVmU9C/oJRdX2UKGgGR0ByMOxxDLKWaAdNKgFoCEdAlZnyR8twrHV9lChoBkdAcNccqe9SM2gHTRABaAhHQJWaE/W1+iJ1fZQoaAZHQHH5aEJ0GNdoB00BAWgIR0CVmkh0Qsf8dX2UKGgGR0Bx+jaM72csaAdNHQFoCEdAlZpfsu3+dnV9lChoBkdAct6VDa4+bGgHTQkBaAhHQJWaipvP1L91fZQoaAZHQG/+6xHG0eFoB00vAWgIR0CVmzWsRxtIdX2UKGgGR0BwDWoddVvNaAdNCAFoCEdAlZt4ldC3PXV9lChoBkdAb2vpyIYWL2gHTQgBaAhHQJWbeSOinHh1fZQoaAZHQG77enZTQ3RoB00vAWgIR0CVm84YJmdzdX2UKGgGR0Bydw/FBIFvaAdL+GgIR0CVnCH2AXl9dX2UKGgGR0BxIwOXmeUZaAdNDQFoCEdAlZ6nEAHVw3V9lChoBkdAcgQP/aQFLWgHTQIBaAhHQJWfPHNorWl1fZQoaAZHQG1dSHM2WIJoB008AWgIR0CVn+R8MNMHdX2UKGgGR0BstM4JeE7GaAdNXQFoCEdAlaCDOoo/inV9lChoBkdAcAbKiwjdHmgHTRgBaAhHQJWh1U3n6mB1fZQoaAZHQG4bQl8gIQhoB00aAWgIR0CVomQTmGM5dX2UKGgGR0BuhPm1YyO8aAdNCAFoCEdAlaJ7SApazXV9lChoBkdAcSjSDh99dGgHTQ4BaAhHQJWi51MdtEZ1fZQoaAZHQHDwttdiUgVoB00RAWgIR0CVo1ZUT+NtdX2UKGgGR0BtqgkcCHRDaAdNFgFoCEdAlaOpmyxA0XV9lChoBkdAbydzIV/MGGgHTRIBaAhHQJWjv9YOlO51fZQoaAZHQG5csAmzByloB00JAWgIR0CVpFKwpvxZdX2UKGgGR0By/AW/JvHcaAdL/2gIR0CVpM25hBqsdX2UKGgGR0BunHdO6/ZeaAdNEQFoCEdAlaTwgs9SuXV9lChoBkdAbK1WlMyrP2gHTQsBaAhHQJWlyQwK0D51fZQoaAZHQHAlBOgxrSFoB00rAWgIR0CVpeEtdzGQdX2UKGgGR0ByPBwBHTZyaAdL8WgIR0CVqNaRISUUdX2UKGgGR0ByJqNyYG+saAdNEwFoCEdAlamEy+HrQnV9lChoBkdAcM2rXlKbrmgHTSIBaAhHQJWrdMtbs4V1fZQoaAZHQHJemFev6j5oB00IAWgIR0CVrLhOP/70dX2UKGgGR0ByPTl90A93aAdL+WgIR0CVrOP5pJwsdX2UKGgGR0Byed/ZuhsZaAdNIQFoCEdAla0UwaisXHV9lChoBkdAcmXMtbs4UGgHTRoBaAhHQJWtPMpw0fp1fZQoaAZHQHEjktAcDKZoB01IAWgIR0CVrWwwj+rEdX2UKGgGR0BwP5mL9/BnaAdNDgFoCEdAla3Le2uxKXV9lChoBkdAcY9ornTy8WgHTSIBaAhHQJWty4e9zwN1fZQoaAZHQG2O0zsQd0doB00RAWgIR0CVrdD9OymidX2UKGgGR0BxmxsP8Q7LaAdL6mgIR0CVrk0hvBJqdX2UKGgGR0BwPxQj2SMcaAdNFAFoCEdAla5Q5vLowHV9lChoBkdAcDPMr3CbdGgHTRYBaAhHQJWuxAfMfRx1fZQoaAZHQHBrH6InBtVoB00DAWgIR0CVrurK/20zdX2UKGgGR0ByEJszl90BaAdNMAFoCEdAla86fapPynV9lChoBkdAcc2t1ZDArWgHS+doCEdAlbHMhkiD/XV9lChoBkdAcLVg9eQdS2gHTS8BaAhHQJWyE0YTCch1fZQoaAZHQHAmkBXCCSRoB00yAWgIR0CVsrDmbLEDdX2UKGgGR0BwAquloDgZaAdL8GgIR0CVsvcpb2UTdX2UKGgGR0BzEDVjI7vHaAdL72gIR0CVsxZ2pyZKdX2UKGgGR0Bv7nfAKv3baAdL9WgIR0CVs5DLbHp9dX2UKGgGR0BvLlfG+9J0aAdL+GgIR0CVtFQ40dildX2UKGgGR0Bw0/We6I3zaAdL7GgIR0CVtJs3AEdOdX2UKGgGR0BwOGpFTefqaAdNFAFoCEdAlbS+bAk9lnV9lChoBkdAcKnjdHlOoGgHTQsBaAhHQJW04TewcHZ1fZQoaAZHQHEXps0pEx9oB00qAWgIR0CVtQaxHG0edX2UKGgGR0BveyVSn+AFaAdNBgFoCEdAlbVHqmj0tnV9lChoBkdAb1ETL4etCGgHTQ0BaAhHQJW18+fRNRF1fZQoaAZHQHHRhYeT3ZhoB004AWgIR0CVtfx/d69kdX2UKGgGR0Bte+qvNeMRaAdNGQFoCEdAlba9oWYWtXV9lChoBkdAcYtsnAqNImgHTS0BaAhHQJW2212JSBN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 280, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |