Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# LongVA
|
2 |
+
<p align="center">
|
3 |
+
<img src="https://i.postimg.cc/4xFmj8wd/v-niah.png" width="800">
|
4 |
+
</p>
|
5 |
+
<p align="center">
|
6 |
+
π <a href="https://lmms-lab.github.io/posts/longva/" target="_blank">Blog</a> | π <a href="https://arxiv.org/abs/2406.16852" target="_blank">Paper</a> | π€ <a href="https://huggingface.co/collections/lmms-lab/longva-667538e09329dbc7ea498057" target="_blank">Hugging Face</a> | π₯ <a href="https://longva-demo.lmms-lab.com/" target="_blank">Demo</a>
|
7 |
+
</p>
|
8 |
+
Long context capability can **zero-shot transfer** from language to vision.
|
9 |
+
|
10 |
+
LongVA can process **2000** frames or over **200K** visual tokens. It achieves **state-of-the-art** performance on Video-MME among 7B models.
|
11 |
+
|
12 |
+
# Usage
|
13 |
+
|
14 |
+
First follow the instructions in [our repo](https://github.com/EvolvingLMMs-Lab/LongVA) to install relevant packages.
|
15 |
+
|
16 |
+
```python
|
17 |
+
from longva.model.builder import load_pretrained_model
|
18 |
+
from longva.mm_utils import tokenizer_image_token, process_images
|
19 |
+
from longva.constants import IMAGE_TOKEN_INDEX
|
20 |
+
from PIL import Image
|
21 |
+
from decord import VideoReader, cpu
|
22 |
+
import torch
|
23 |
+
import numpy as np
|
24 |
+
# fix seed
|
25 |
+
torch.manual_seed(0)
|
26 |
+
model_path = "lmms-lab/LongVA-7B-DPO"
|
27 |
+
image_path = "local_demo/assets/lmms-eval.png"
|
28 |
+
video_path = "local_demo/assets/dc_demo.mp4"
|
29 |
+
max_frames_num = 16 # you can change this to several thousands so long you GPU memory can handle it :)
|
30 |
+
gen_kwargs = {"do_sample": True, "temperature": 0.5, "top_p": None, "num_beams": 1, "use_cache": True, "max_new_tokens": 1024}
|
31 |
+
tokenizer, model, image_processor, _ = load_pretrained_model(model_path, None, "llava_qwen", device_map="cuda:0")
|
32 |
+
#image input
|
33 |
+
prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<image>\nDescribe the image in details.<|im_end|>\n<|im_start|>assistant\n"
|
34 |
+
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(model.device)
|
35 |
+
image = Image.open(image_path).convert("RGB")
|
36 |
+
images_tensor = process_images([image], image_processor, model.config).to(model.device, dtype=torch.float16)
|
37 |
+
with torch.inference_mode():
|
38 |
+
output_ids = model.generate(input_ids, images=[images_tensor], image_sizes=[image.size], modalities=["image"], **gen_kwargs)
|
39 |
+
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
40 |
+
print(outputs)
|
41 |
+
print("-"*50)
|
42 |
+
#video input
|
43 |
+
prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<image>\nGive a detailed caption of the video as if I am blind.<|im_end|>\n<|im_start|>assistant\n"
|
44 |
+
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(model.device)
|
45 |
+
vr = VideoReader(video_path, ctx=cpu(0))
|
46 |
+
total_frame_num = len(vr)
|
47 |
+
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, max_frames_num, dtype=int)
|
48 |
+
frame_idx = uniform_sampled_frames.tolist()
|
49 |
+
frames = vr.get_batch(frame_idx).asnumpy()
|
50 |
+
video_tensor = image_processor.preprocess(frames, return_tensors="pt")["pixel_values"].to(model.device, dtype=torch.float16)
|
51 |
+
with torch.inference_mode():
|
52 |
+
output_ids = model.generate(input_ids, images=[video_tensor], modalities=["video"], **gen_kwargs)
|
53 |
+
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
54 |
+
print(outputs)
|
55 |
+
```
|