pppppM
commited on
Commit
•
d36cdcd
1
Parent(s):
7b0cea6
update README.md
Browse files- README.md +115 -0
- README_zh-CN.md +90 -0
README.md
CHANGED
@@ -1,3 +1,118 @@
|
|
1 |
---
|
2 |
license: llama2
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: llama2
|
3 |
+
pipeline_tag: text-generation
|
4 |
+
tags:
|
5 |
+
- text-generation-inference
|
6 |
---
|
7 |
+
|
8 |
+
<div align="center">
|
9 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/64ccdc322e592905f922a06e/VhwQtaklohkUXFWkjA-3M.png" width="450"/>
|
10 |
+
|
11 |
+
English | [简体中文](README_zh-CN.md)
|
12 |
+
|
13 |
+
</div>
|
14 |
+
|
15 |
+
<p align="center">
|
16 |
+
👋 join us on <a href="https://twitter.com/intern_lm" target="_blank">Twitter</a>, <a href="https://discord.gg/xa29JuW87d" target="_blank">Discord</a> and <a href="https://r.vansin.top/?r=internwx" target="_blank">WeChat</a>
|
17 |
+
</p>
|
18 |
+
|
19 |
+
|
20 |
+
# W4A16 LLM Model Deployment
|
21 |
+
|
22 |
+
LMDeploy supports LLM model inference of 4-bit weight, with the minimum requirement for NVIDIA graphics cards being sm80.
|
23 |
+
|
24 |
+
Before proceeding with the inference, please ensure that lmdeploy(>=v0.0.14) is installed.
|
25 |
+
|
26 |
+
```shell
|
27 |
+
pip install 'lmdeploy>=0.0.14'
|
28 |
+
```
|
29 |
+
|
30 |
+
## 4-bit LLM model Inference
|
31 |
+
|
32 |
+
You can download the pre-quantized 4-bit weight models from LMDeploy's [model zoo](https://huggingface.co/lmdeploy) and conduct inference using the following command.
|
33 |
+
|
34 |
+
Alternatively, you can quantize 16-bit weights to 4-bit weights following the ["4-bit Weight Quantization"](#4-bit-weight-quantization) section, and then perform inference as per the below instructions.
|
35 |
+
|
36 |
+
Take the 4-bit Llama-2-70B model from the model zoo as an example:
|
37 |
+
|
38 |
+
```shell
|
39 |
+
git-lfs install
|
40 |
+
git clone https://huggingface.co/lmdeploy/llama2-chat-70b-4bit
|
41 |
+
```
|
42 |
+
|
43 |
+
As demonstrated in the command below, first convert the model's layout using `turbomind.deploy`, and then you can interact with the AI assistant in the terminal
|
44 |
+
|
45 |
+
```shell
|
46 |
+
|
47 |
+
## Convert the model's layout and store it in the default path, ./workspace.
|
48 |
+
lmdeploy convert \
|
49 |
+
--model-name llama2 \
|
50 |
+
--model-path ./llama2-chat-70b-w4 \
|
51 |
+
--model-format awq \
|
52 |
+
--group-size 128
|
53 |
+
|
54 |
+
## inference
|
55 |
+
lmdeploy chat ./workspace
|
56 |
+
```
|
57 |
+
|
58 |
+
## Serve with gradio
|
59 |
+
|
60 |
+
If you wish to interact with the model via web ui, please initiate the gradio server as indicated below:
|
61 |
+
|
62 |
+
```shell
|
63 |
+
lmdeploy serve gradio ./workspace --server_name {ip_addr} --server_port {port}
|
64 |
+
```
|
65 |
+
|
66 |
+
Subsequently, you can open the website `http://{ip_addr}:{port}` in your browser and interact with the model
|
67 |
+
|
68 |
+
## Inference Performance
|
69 |
+
|
70 |
+
We benchmarked the Llama 2 7B and 13B with 4-bit quantization on NVIDIA GeForce RTX 4090 using [profile_generation.py](https://github.com/InternLM/lmdeploy/blob/main/benchmark/profile_generation.py). And we measure the token generation throughput (tokens/s) by setting a single prompt token and generating 512 tokens. All the results are measured for single batch inference.
|
71 |
+
|
72 |
+
| model | llm-awq | mlc-llm | turbomind |
|
73 |
+
| ----------- | ------- | ------- | --------- |
|
74 |
+
| Llama 2 7B | 112.9 | 159.4 | 206.4 |
|
75 |
+
| Llama 2 13B | N/A | 90.7 | 115.8 |
|
76 |
+
|
77 |
+
```shell
|
78 |
+
pip install nvidia-ml-py
|
79 |
+
```
|
80 |
+
|
81 |
+
```bash
|
82 |
+
python profile_generation.py \
|
83 |
+
--model-path /path/to/your/model \
|
84 |
+
--concurrency 1 8 --prompt-tokens 0 512 --completion-tokens 2048 512
|
85 |
+
```
|
86 |
+
|
87 |
+
## 4-bit Weight Quantization
|
88 |
+
|
89 |
+
It includes two steps:
|
90 |
+
|
91 |
+
- generate quantization parameter
|
92 |
+
- quantize model according to the parameter
|
93 |
+
|
94 |
+
### Step 1: Generate Quantization Parameter
|
95 |
+
|
96 |
+
```shell
|
97 |
+
lmdeploy lite calibrate \
|
98 |
+
--model $HF_MODEL \
|
99 |
+
--calib_dataset 'c4' \ # Calibration dataset, supports c4, ptb, wikitext2, pileval
|
100 |
+
--calib_samples 128 \ # Number of samples in the calibration set, if memory is insufficient, you can appropriately reduce this
|
101 |
+
--calib_seqlen 2048 \ # Length of a single piece of text, if memory is insufficient, you can appropriately reduce this
|
102 |
+
--work_dir $WORK_DIR \ # Folder storing Pytorch format quantization statistics parameters and post-quantization weight
|
103 |
+
```
|
104 |
+
|
105 |
+
### Step2: Quantize Weights
|
106 |
+
|
107 |
+
LMDeploy employs AWQ algorithm for model weight quantization.
|
108 |
+
|
109 |
+
```shell
|
110 |
+
lmdeploy lite auto_awq \
|
111 |
+
--model $HF_MODEL \
|
112 |
+
--w_bits 4 \ # Bit number for weight quantization
|
113 |
+
--w_sym False \ # Whether to use symmetric quantization for weights
|
114 |
+
--w_group_size 128 \ # Group size for weight quantization statistics
|
115 |
+
--work_dir $WORK_DIR \ # Directory saving quantization parameters from Step 1
|
116 |
+
```
|
117 |
+
|
118 |
+
After the quantization is complete, the quantized model is saved to `$WORK_DIR`. Then you can proceed with model inference according to the instructions in the ["4-Bit Weight Model Inference"](#4-bit-llm-model-inference) section.
|
README_zh-CN.md
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# W4A16 LLM 模型部署
|
2 |
+
|
3 |
+
LMDeploy 支持 4bit 权重模型的推理,**对 NVIDIA 显卡的最低要求是 sm80**。
|
4 |
+
|
5 |
+
在推理之前,请确保安装了 lmdeploy,版本 >= v0.0.14
|
6 |
+
|
7 |
+
```shell
|
8 |
+
pip install 'lmdeploy>=0.0.14'
|
9 |
+
```
|
10 |
+
|
11 |
+
## 4bit 权重模型推理
|
12 |
+
|
13 |
+
你可以直接从 LMDeploy 的 [model zoo](https://huggingface.co/lmdeploy) 下载已经量化好的 4bit 权重模型,直接使用下面的命令推理。也可以根据["4bit 权重量化"](#4bit-权重量化)章节的内容,把 16bit 权重量化为 4bit 权重,然后再按下述说明推理
|
14 |
+
|
15 |
+
以 4bit 的 Llama-2-chat-70B 模型为例,可以从 model zoo 直接下载:
|
16 |
+
|
17 |
+
```shell
|
18 |
+
git-lfs install
|
19 |
+
git clone https://huggingface.co/lmdeploy/llama2-chat-70b-4bit
|
20 |
+
```
|
21 |
+
|
22 |
+
执行以下命令,即可在终端与模型对话:
|
23 |
+
|
24 |
+
```shell
|
25 |
+
|
26 |
+
## 转换模型的layout,存放在默认路径 ./workspace 下
|
27 |
+
lmdeploy convert \
|
28 |
+
--model-name llama2 \
|
29 |
+
--model-path ./llama2-chat-70b-4bit \
|
30 |
+
--model-format awq \
|
31 |
+
--group-size 128
|
32 |
+
|
33 |
+
## 推理
|
34 |
+
lmdeploy chat ./workspace
|
35 |
+
```
|
36 |
+
|
37 |
+
## 启动 gradio 服务
|
38 |
+
|
39 |
+
如果想通过 webui 与模型对话,请执行以下命令启动 gradio 服务
|
40 |
+
|
41 |
+
```shell
|
42 |
+
lmdeploy serve gradio ./workspace --server_name {ip_addr} --server_port {port}
|
43 |
+
```
|
44 |
+
|
45 |
+
然后,在浏览器中打开 http://{ip_addr}:{port},即可在线对话
|
46 |
+
|
47 |
+
## 推理速度
|
48 |
+
|
49 |
+
我们在 NVIDIA GeForce RTX 4090 上使用 [profile_generation.py](https://github.com/InternLM/lmdeploy/blob/main/benchmark/profile_generation.py),分别测试了 4-bit Llama-2-7B 和 Llama-2-13B 模型的 token 生成速度。测试配置为 batch size = 1,(prompt_tokens, completion_tokens) = (1, 512)
|
50 |
+
|
51 |
+
| model | llm-awq | mlc-llm | turbomind |
|
52 |
+
| ----------- | ------- | ------- | --------- |
|
53 |
+
| Llama 2 7B | 112.9 | 159.4 | 206.4 |
|
54 |
+
| Llama 2 13B | N/A | 90.7 | 115.8 |
|
55 |
+
|
56 |
+
```shell
|
57 |
+
python benchmark/profile_generation.py \
|
58 |
+
./workspace \
|
59 |
+
--concurrency 1 --input_seqlen 1 --output_seqlen 512
|
60 |
+
```
|
61 |
+
|
62 |
+
## 4bit 权重量化
|
63 |
+
|
64 |
+
4bit 权重量化包括 2 步:
|
65 |
+
|
66 |
+
- 生成量化参数
|
67 |
+
- 根据量化参数,量化模型权重
|
68 |
+
|
69 |
+
### 第一步:生成量化参数
|
70 |
+
|
71 |
+
```shell
|
72 |
+
lmdeploy lite calibrate \
|
73 |
+
--model $HF_MODEL \
|
74 |
+
--calib_dataset 'c4' \ # 校准数据集,支持 c4, ptb, wikitext2, pileval
|
75 |
+
--calib_samples 128 \ # 校准集的样本数,如果显存不够,可以适当调小
|
76 |
+
--calib_seqlen 2048 \ # 单条的文本长度,如果显存不够,可以适当调小
|
77 |
+
--work_dir $WORK_DIR \ # 保存 Pytorch 格式量化统计参数和量化后权重的文件夹
|
78 |
+
```
|
79 |
+
|
80 |
+
### 第二步:量化权重模型
|
81 |
+
|
82 |
+
LMDeploy 使用 AWQ 算法对模型权重进行量化。在执行下面的命令时,需要把步骤1的`$WORK_DIR`传入。量化结束后,权重文件也会存放在这个目录中。然后就可以根据 ["4bit权重模型推理"](#4bit-权重模型推理)章节的说明,进行模型推理。
|
83 |
+
|
84 |
+
```shell
|
85 |
+
lmdeploy lite auto_awq \
|
86 |
+
--model $HF_MODEL \
|
87 |
+
--w_bits 4 \ # 权重量化的 bit 数
|
88 |
+
--w_group_size 128 \ # 权重量化分组统计尺寸
|
89 |
+
--work_dir $WORK_DIR \ # 步骤 1 保存量化参数的目录
|
90 |
+
```
|