lmazzon70 commited on
Commit
0af6f6b
1 Parent(s): c039392

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: videomae-base-short-finetuned-ssv2-finetuned-rwf2000-epochs8
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # videomae-base-short-finetuned-ssv2-finetuned-rwf2000-epochs8
16
+
17
+ This model is a fine-tuned version of [MCG-NJU/videomae-base-short-finetuned-ssv2](https://huggingface.co/MCG-NJU/videomae-base-short-finetuned-ssv2) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 2.3523
20
+ - Accuracy: 0.5071
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 5e-05
40
+ - train_batch_size: 2
41
+ - eval_batch_size: 2
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - lr_scheduler_warmup_ratio: 0.1
46
+ - training_steps: 6400
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
52
+ | 0.5905 | 0.12 | 800 | 0.6397 | 0.795 |
53
+ | 0.8951 | 1.12 | 1600 | 1.4140 | 0.6575 |
54
+ | 0.0121 | 2.12 | 2400 | 1.0683 | 0.7212 |
55
+ | 0.0081 | 3.12 | 3200 | 1.4044 | 0.6625 |
56
+ | 0.0531 | 4.12 | 4000 | 0.7906 | 0.8237 |
57
+ | 0.0045 | 5.12 | 4800 | 1.1109 | 0.7612 |
58
+ | 0.017 | 6.12 | 5600 | 1.8795 | 0.6462 |
59
+ | 0.6752 | 7.12 | 6400 | 1.0282 | 0.79 |
60
+
61
+
62
+ ### Framework versions
63
+
64
+ - Transformers 4.25.1
65
+ - Pytorch 1.13.1+cu117
66
+ - Datasets 2.8.0
67
+ - Tokenizers 0.13.2