Update README.md
Browse files
README.md
CHANGED
@@ -3,17 +3,19 @@ license: apache-2.0
|
|
3 |
inference: false
|
4 |
---
|
5 |
|
6 |
-
# SLIM-Q-GEN-
|
7 |
|
8 |
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
|
10 |
-
**slim-q-gen-
|
11 |
|
12 |
`{'question': ['What were earnings per share in the most recent quarter?'] }
|
13 |
|
14 |
-
This model is finetuned on top of
|
15 |
|
16 |
-
For fast inference use, we would recommend the 'quantized tool' version, e.g., [**
|
|
|
|
|
17 |
|
18 |
|
19 |
## Prompt format:
|
@@ -27,8 +29,8 @@ For fast inference use, we would recommend the 'quantized tool' version, e.g.,
|
|
27 |
<details>
|
28 |
<summary>Transformers Script </summary>
|
29 |
|
30 |
-
model = AutoModelForCausalLM.from_pretrained("llmware/slim-q-gen-
|
31 |
-
tokenizer = AutoTokenizer.from_pretrained("llmware/slim-q-gen-
|
32 |
|
33 |
function = "generate"
|
34 |
params = "boolean"
|
@@ -72,7 +74,7 @@ For fast inference use, we would recommend the 'quantized tool' version, e.g.,
|
|
72 |
<summary>Using as Function Call in LLMWare</summary>
|
73 |
|
74 |
from llmware.models import ModelCatalog
|
75 |
-
slim_model = ModelCatalog().load_model("llmware/slim-q-gen-
|
76 |
response = slim_model.function_call(text,params=["boolean"], function="generate")
|
77 |
|
78 |
print("llmware - llm_response: ", response)
|
|
|
3 |
inference: false
|
4 |
---
|
5 |
|
6 |
+
# SLIM-Q-GEN-TINY
|
7 |
|
8 |
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
|
10 |
+
**slim-q-gen-tiny** implements a specialized function-calling question generation from a context passage, with output in the form of a python dictionary, e.g.,
|
11 |
|
12 |
`{'question': ['What were earnings per share in the most recent quarter?'] }
|
13 |
|
14 |
+
This model is finetuned on top of a tinyllama-1.1b base, and is intended for fast, local prototyping.
|
15 |
|
16 |
+
For fast inference use, we would recommend the 'quantized tool' version, e.g., [**slim-q-gen-tiny-tool**](https://huggingface.co/llmware/slim-q-gen-tiny-tool).
|
17 |
+
|
18 |
+
You also may want to checkout the finetuned phi-3 version of this model, e.g., [**slim-q-gen-phi-3-tool**](https://huggingface.co/llmware/slim-q-gen-phi-3-tool).
|
19 |
|
20 |
|
21 |
## Prompt format:
|
|
|
29 |
<details>
|
30 |
<summary>Transformers Script </summary>
|
31 |
|
32 |
+
model = AutoModelForCausalLM.from_pretrained("llmware/slim-q-gen-tiny")
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained("llmware/slim-q-gen-tiny")
|
34 |
|
35 |
function = "generate"
|
36 |
params = "boolean"
|
|
|
74 |
<summary>Using as Function Call in LLMWare</summary>
|
75 |
|
76 |
from llmware.models import ModelCatalog
|
77 |
+
slim_model = ModelCatalog().load_model("llmware/slim-q-gen-tiny", sample=True, temperature=0.7)
|
78 |
response = slim_model.function_call(text,params=["boolean"], function="generate")
|
79 |
|
80 |
print("llmware - llm_response: ", response)
|