doberst commited on
Commit
bae318e
1 Parent(s): aacc98d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -7
README.md CHANGED
@@ -3,17 +3,19 @@ license: apache-2.0
3
  inference: false
4
  ---
5
 
6
- # SLIM-Q-GEN-PHI-3
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
9
 
10
- **slim-q-gen-phi-3** implements a specialized function-calling question generation from a context passage, with output in the form of a python dictionary, e.g.,
11
 
12
  &nbsp;&nbsp;&nbsp;&nbsp;`{'question': ['What were earnings per share in the most recent quarter?'] }
13
 
14
- This model is finetuned on top of phi-3-mini-4k-instruct base.
15
 
16
- For fast inference use, we would recommend the 'quantized tool' version, e.g., [**'slim-q-gen-phi-3-tool'**](https://huggingface.co/llmware/slim-q-gen-phi-3-tool).
 
 
17
 
18
 
19
  ## Prompt format:
@@ -27,8 +29,8 @@ For fast inference use, we would recommend the 'quantized tool' version, e.g.,
27
  <details>
28
  <summary>Transformers Script </summary>
29
 
30
- model = AutoModelForCausalLM.from_pretrained("llmware/slim-q-gen-phi-3")
31
- tokenizer = AutoTokenizer.from_pretrained("llmware/slim-q-gen-phi-3")
32
 
33
  function = "generate"
34
  params = "boolean"
@@ -72,7 +74,7 @@ For fast inference use, we would recommend the 'quantized tool' version, e.g.,
72
  <summary>Using as Function Call in LLMWare</summary>
73
 
74
  from llmware.models import ModelCatalog
75
- slim_model = ModelCatalog().load_model("llmware/slim-q-gen-phi-3", sample=True, temperature=0.7)
76
  response = slim_model.function_call(text,params=["boolean"], function="generate")
77
 
78
  print("llmware - llm_response: ", response)
 
3
  inference: false
4
  ---
5
 
6
+ # SLIM-Q-GEN-TINY
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
9
 
10
+ **slim-q-gen-tiny** implements a specialized function-calling question generation from a context passage, with output in the form of a python dictionary, e.g.,
11
 
12
  &nbsp;&nbsp;&nbsp;&nbsp;`{'question': ['What were earnings per share in the most recent quarter?'] }
13
 
14
+ This model is finetuned on top of a tinyllama-1.1b base, and is intended for fast, local prototyping.
15
 
16
+ For fast inference use, we would recommend the 'quantized tool' version, e.g., [**slim-q-gen-tiny-tool**](https://huggingface.co/llmware/slim-q-gen-tiny-tool).
17
+
18
+ You also may want to checkout the finetuned phi-3 version of this model, e.g., [**slim-q-gen-phi-3-tool**](https://huggingface.co/llmware/slim-q-gen-phi-3-tool).
19
 
20
 
21
  ## Prompt format:
 
29
  <details>
30
  <summary>Transformers Script </summary>
31
 
32
+ model = AutoModelForCausalLM.from_pretrained("llmware/slim-q-gen-tiny")
33
+ tokenizer = AutoTokenizer.from_pretrained("llmware/slim-q-gen-tiny")
34
 
35
  function = "generate"
36
  params = "boolean"
 
74
  <summary>Using as Function Call in LLMWare</summary>
75
 
76
  from llmware.models import ModelCatalog
77
+ slim_model = ModelCatalog().load_model("llmware/slim-q-gen-tiny", sample=True, temperature=0.7)
78
  response = slim_model.function_call(text,params=["boolean"], function="generate")
79
 
80
  print("llmware - llm_response: ", response)