File size: 19,166 Bytes
cb453fc
 
02971ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb453fc
02971ea
8841a8a
 
02971ea
 
 
 
 
 
 
 
 
 
 
 
 
 
342b809
02971ea
 
342b809
02971ea
342b809
 
 
 
02971ea
342b809
02971ea
 
 
 
 
 
 
 
 
 
 
 
bfd2da5
 
02971ea
bfd2da5
 
02971ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28afd59
bfd2da5
 
096ad41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02971ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
---
license: mit
datasets:
- openai/summarize_from_feedback
- openai/webgpt_comparisons
- Dahoas/instruct-synthetic-prompt-responses
- Anthropic/hh-rlhf
- lmsys/chatbot_arena_conversations
- openbmb/UltraFeedback
metrics:
- accuracy
tags:
- reward_model
- reward-model
- RLHF
- evaluation
- llm
- instruction
- reranking
language:
- en
pipeline_tag: text-generation
---

**This is the hugging face compatible version of [llm-blender/PairRM](https://huggingface.co/llm-blender/PairRM)**, 
which can be loaded directly with [`DebertaV2PairRM`](https://github.com/yuchenlin/LLM-Blender/blob/main/llm_blender/pair_ranker/pairrm.py):
```python
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
from llm_blender.pair_ranker.pairrm import DebertaV2PairRM
from transformers import AutoTokenizer
from typing import List
pairrm = DebertaV2PairRM.from_pretrained("llm-blender/PairRM-hf", device_map="cuda:0")
tokenizer = AutoTokenizer.from_pretrained('llm-blender/PairRM-hf')
source_prefix = "<|source|>"
cand1_prefix = "<|candidate1|>"
cand2_prefix = "<|candidate2|>"
inputs = ["hello!", "I love you!"]
candidates_A = ["hi!", "I hate you!"]
candidates_B = ["f**k off!", "I love you, too!"]
def tokenize_pair(sources:List[str], candidate1s:List[str], candidate2s:List[str], source_max_length=1224, candidate_max_length=412):
    ids = []
    assert len(sources) == len(candidate1s) == len(candidate2s)
    max_length = source_max_length + 2 * candidate_max_length
    for i in range(len(sources)):
        source_ids = tokenizer.encode(source_prefix + sources[i], max_length=source_max_length, truncation=True)
        candidate_max_length = (max_length - len(source_ids)) // 2
        candidate1_ids = tokenizer.encode(cand1_prefix + candidate1s[i], max_length=candidate_max_length, truncation=True)
        candidate2_ids = tokenizer.encode(cand2_prefix + candidate2s[i], max_length=candidate_max_length, truncation=True)
        ids.append(source_ids + candidate1_ids + candidate2_ids)
    encodings = tokenizer.pad({"input_ids": ids}, return_tensors="pt", padding=True, max_length=max_length)
    return encodings

encodings = tokenize_pair(inputs, candidates_A, candidates_B)
encodings = {k:v.to(pairrm.device) for k,v in encodings.items()}
outputs = pairrm(**encodings)
logits = outputs.logits.tolist()
comparison_results = outputs.logits > 0
print(logits)
# [1.9003021717071533, -1.2547134160995483]
print(comparison_results)
# tensor([ True, False], device='cuda:0'), which means whether candidate A is better than candidate B for each input
```
You can also copy the simple definition of [`DebertaV2PairRM`](https://github.com/yuchenlin/LLM-Blender/blob/main/llm_blender/pair_ranker/pairrm.py) code as your local file, 
instead of importing it from the `llm-blender` package


The above code produces exactly the same results as the following code using the original LLM-blender wrapper:
```python
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
import llm_blender
blender = llm_blender.Blender()
# Load Ranker
blender.loadranker("llm-blender/PairRM") # load ranker checkpoint
inputs = ["hello!", "I love you!"]
candidates_A = ["hi!", "I hate you!"]
candidates_B = ["f**k off!", "I love you, too!"]
logits = blender.compare(inputs, candidates_A, candidates_B, return_logits=True, mode="[A,B]")
comparison_results = logits > 0
print(logits)
# [ 1.9   -1.255]
print(comparison_results)
# tensor([ True, False], device='cuda:0'), which means whether candidate A is better than candidate B for each input
```

**We still recommend using the llm-blender wrapper to use the PairRM, as many useful application functions have been implemented to support various scenarios, such as rank, and conversation comparisons, best-of-n-sampling, etc.**


You can also easily compare two conversations like the followings:
```python
def tokenize_conv_pair(convAs: List[str], convBs: List[str]):
    """Compare two conversations by takeing USER turns as inputs and ASSISTANT turns as candidates
        Multi-turn conversations comparison is also supportted.
        a conversation format is:
        ```python
        [
            {
                "content": "hello",
                "role": "USER"
            },
            {
                "content": "hi",
                "role": "ASSISTANT"
            },
            ...
        ]
        ```
    Args:
        convAs (List[List[dict]]): List of conversations
        convAs (List[List[dict]]): List of conversations
    """

    for c in convAs + convBs:
        assert len(c) % 2 == 0, "Each conversation must have even number of turns"
        assert all([c[i]['role'] == 'USER' for i in range(0, len(c), 2)]), "Each even turn must be USER"
        assert all([c[i]['role'] == 'ASSISTANT' for i in range(1, len(c), 2)]), "Each odd turn must be ASSISTANT"
    # check conversations correctness
    assert len(convAs) == len(convBs), "Number of conversations must be the same"
    for c_a, c_b in zip(convAs, convBs):
        assert len(c_a) == len(c_b), "Number of turns in each conversation must be the same"
        assert all([c_a[i]['content'] == c_b[i]['content'] for i in range(0, len(c_a), 2)]), "USER turns must be the same"
    
    instructions = ["Finish the following coversation in each i-th turn by filling in <Response i> with your response."] * len(convAs)
    inputs = [
        "\n".join([
            "USER: " + x[i]['content'] +
            f"\nAssistant: <Response {i//2+1}>" for i in range(0, len(x), 2)
        ]) for x in convAs
    ]
    cand1_texts = [
        "\n".join([
            f"<Response {i//2+1}>: " + x[i]['content'] for i in range(1, len(x), 2)
        ]) for x in convAs
    ]
    cand2_texts = [
        "\n".join([
            f"<Response {i//2+1}>: " + x[i]['content'] for i in range(1, len(x), 2)
        ]) for x in convBs
    ]
    inputs = [inst + inp for inst, inp in zip(instructions, inputs)]
    encodings = tokenize_pair(inputs, cand1_texts, cand2_texts)
    return encodings
```

# Pairwise Reward Model for LLMs (PairRM) from LLM-Blender 


- Github: [https://github.com/yuchenlin/LLM-Blender](https://github.com/yuchenlin/LLM-Blender)
- Paper: [https://arxiv.org/abs/2306.02561](https://arxiv.org/abs/2306.02561)
- Space Demo: [https://huggingface.co/spaces/llm-blender/LLM-Blender](https://huggingface.co/spaces/llm-blender/LLM-Blender)


## Introduction 

Pairwise Reward Model (PairRM) takes an instruction and a **pair** of output candidates as the input, 
and output a score for each candidate to measure their **relative** quality. 
PairRM can be used to (re-)rank a list of candidate outputs and thus can be used an LLM evaluator to efficiently assess the quality of LLMs in local environment.
PairRM can also be used to enhance the decoding by `best-of-n sampling` (i.e., reranking N sampled outputs). 
Apart from that, one can also use PairRM to further align instruction-tuned LLMs with RLHF methods. 

Unlike the other RMs that encode and score each candidate respectively, 
PairRM takes a pair of candidates and compares them side-by-side to indentify the subtle differences between them.
Also, PairRM is based on [`microsoft/deberta-v3-large`](https://huggingface.co/microsoft/deberta-v3-large), and thus it is super efficient: **0.4B**.
We trained PairRM on a diverse collection of six human-preference datasets (see more [here](https://huggingface.co/llm-blender/PairRM#training-datasets)).

PairRM is part of the LLM-Blender project (ACL 2023). Please see our [paper](https://arxiv.org/abs/2306.02561) above to know more.


## Installation

- First install `llm-blender`
```bash
pip install git+https://github.com/yuchenlin/LLM-Blender.git
```

- Then load PairRM:
```python
import llm_blender
blender = llm_blender.Blender()
blender.loadranker("llm-blender/PairRM") # load PairRM
```


## Usage 

### Use Case 1: Comparing/Ranking output candidates given an instruction

- Ranking a list candidate responses

```python
inputs = ["hello, how are you!", "I love you!"]
candidates_texts = [["get out!", "hi! I am fine, thanks!", "bye!"], 
                    ["I love you too!", "I hate you!", "Thanks! You're a good guy!"]]
ranks = blender.rank(inputs, candidates_texts, return_scores=False, batch_size=1)
# ranks is a list of ranks
# ranks[i][j] represents the ranks of candidate-j for input-i
"""
ranks -->
array([[3, 1, 2], # it means "hi! I am fine, thanks!" ranks the 1st, "bye" ranks the 2nd, and "get out!" ranks the 3rd. 
       [1, 3, 2]], # it means "I love you too"! ranks the the 1st, and "I hate you!" ranks the 3rd.
       dtype=int32) 

"""
```

- Directly comparing two candidate responses
```python
inputs = ["hello!", "I love you!"]
candidates_A = ["hi!", "I hate you!"]
candidates_B = ["f**k off!", "I love you, too!"]
comparison_results = blender.compare(inputs, candidates_A, candidates_B)
# comparison_results is a list of bool, where comparison_results[i] denotes
       # whether candidates_A[i] is better than candidates_B[i] for inputs[i]
# Example: comparison_results[0]--> True 
```

<details><summary> Comparing two multi-turn conversations. </summary>

```python
conv1 = [
    {
        "content": "hello",
        "role": "USER"
    },
    {
        "content": "[assistant1‘s response 1]",
        "role": "ASSISTANT"
    },
    ...
]
conv2 = [
    {
        "content": "hello",
        "role": "USER"
    },
    {
        "content": "[assistant2's response 1]",
        "role": "ASSISTANT"
    },
    ...
]
comparison_results = blender.compare_conversations([conv1], [conv2])
# comparison_results is a list of bool, where each element denotes whether all the responses in conv1 together is better than that of conv2
```
</details>

          
### Use Case 2: Best-of-n Sampling (Decoding Enhancment)

**Best-of-n Sampling**, aka, rejection sampling, is a strategy to enhance the response quality by selecting the one that was ranked highest by the reward model 
(see more in [OpenAI WebGPT section 3.2](https://arxiv.org/pdf/2112.09332.pdf) and [OpenAI Blog](https://openai.com/research/measuring-goodharts-law)). 
Best-of-n sampling with PairRM is a very easy way to imporve your LLMs with only a few changes of your inference code: 

```python
# loading models 
import llm_blender
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
model = AutoModelForCausalLM.from_pretrained("HuggingFaceH4/zephyr-7b-beta", device_map="auto")
system_message = {"role": "system", "content": "You are a friendly chatbot."}

# formatting your inputs 
inputs = ["can you tell me a joke about OpenAI?"]
messages = [[system_message, {"role": "user", "content": _input}] for _input in inputs]
prompts = [tokenizer.apply_chat_template(m, tokenize=False, add_generation_prompt=True) for m in messages]

# Conventional generation method 
input_ids = tokenizer(prompts[0], return_tensors="pt").input_ids
sampled_outputs = model.generate(input_ids, do_sample=True, top_k=50, top_p=0.95, num_return_sequences=1)
print(tokenizer.decode(sampled_outputs[0][len(input_ids[0]):], skip_special_tokens=False))
# --> The output could be a bad case such as a very short one, e.g., `Sure` 

# PairRM for best-of-n sampling 
blender = llm_blender.Blender()
blender.loadranker("llm-blender/PairRM") # load ranker checkpoint
outputs = blender.best_of_n_generate(model, tokenizer, prompts, n=10)

print("### Prompt:\n", prompts[0])
print("### best-of-n generations:\n", outputs[0])
# --> The output will be much more stable and consistently better than single sampling, for example: 
""" 
Sure, here's a joke about OpenAI:

Why did OpenAI decide to hire a mime as their new AI researcher?

Because they wanted someone who could communicate complex ideas without making a sound!

(Note: This is a joke, not a reflection of OpenAI's actual hiring practices.)
"""
```

### Use case 3: RLHF 
PairRM has been trained on various high-quality and large-scale datasets with human preference annotations 
and shown great correlation with human preferences with an extremely small model size (0.4B), 
approching the performance of GPT-4. 
PairRM will better help the future alignment of LLMs in a more efficient and effective way.
With a `blender.compare()` function, you can apply PairRM to popular RLHF toolkits such as [trl](https://huggingface.co/docs/trl/index). 

**🔥 Check more details on our example jupyter notebook usage: [`blender_usage.ipynb`](https://github.com/yuchenlin/LLM-Blender/blob/main/blender_usage.ipynb)**


Learn more in our LLM-Blender Github [README.md](https://github.com/yuchenlin/LLM-Blender#rank-and-fusion)




## Statistics

### Context length
|  PairRanker type  | Source max length | Candidate max length | Total max length |
|:-----------------:|:-----------------:|----------------------|------------------|
| [pair-ranker](https://huggingface.co/llm-blender/pair-ranker)  (our previous version)             | 128               | 128                  | 384              |
| [PairRM](https://huggingface.co/llm-blender/pair-reward-model/) (This model) | 1224              | 412                  | 2048             |

### Training Datasets
- [openai/summarize_from_feedback](https://huggingface.co/datasets/openai/summarize_from_feedback)
- [openai/webgpt_comparisons](https://huggingface.co/datasets/openai/webgpt_comparisons)
- [Dahoas/instruct-synthetic-prompt-responses](https://huggingface.co/datasets/Dahoas/instruct-synthetic-prompt-responses)
- [Anthropic/hh-rlhf](https://huggingface.co/datasets/Anthropic/hh-rlhf)
- [lmsys/chatbot_arena_conversations](https://huggingface.co/datasets/lmsys/chatbot_arena_conversations)
- [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback)

### Performance
PairRM has been trained on various high-quality and large-scale dataset with human preference annotations and exhibits great correlation with human preferences 
with an extremly small model size (0.4B), approching the performance of GPT-4.

We test the pairwise comparison on 
- [Auto-J pairwise testdata](https://github.com/GAIR-NLP/auto-j#pairwise-response-comparison)
- [HHH-alignment](https://huggingface.co/datasets/HuggingFaceH4/hhh_alignment)
- [MT-bench-human-judgements](https://huggingface.co/datasets/lmsys/mt_bench_human_judgments)

All following results are reported as pairwise comparison accuracies (agreements).

#### Auto-J Pairwise test data performance

|         Model         |    Summ   |    Exam   |    Code   | Rewriting |   Crea W  |   Func W  |  Comm |    NLP   |  Overall  |
|:---------------------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:-----:|:--------:|:---------:|
| Closed -source Models |
|        ChatGPT        |    33.3   |    40.3   |    36.6   |    31.6   |    48.2   |    40.4   |  47.6 |   45.8   |    42.7   |
|       Claude -2       |    30.6   |    36.1   |    41.7   |    34.2   |    48.1   |    42.5   |  40.6 |   48.5   |    42.4   |
|         GPT -4        |    59.7   |    51.4   |    69.2   |    58.3   |    66.7   |    60.4   |  58.3 |   65.2   |    61.9   |
|  Open -source Models  |
|        SteamSHP       |    33.3   |    29.2   |    26.7   |    33.3   |    40.7   |    31.3   |  51.4 |   51.9   |    40.6   |
|        PandaLM        |    29.2   |    33.3   |    31.7   |    23.3   |    43.5   |    32.9   |  44.8 |   48.9   |    38.9   |
|   LLaMA -2-Chat -13B  |    20.8   |    27.8   |    19.2   |     20    |    31.5   |    27.5   |  35.8 |   31.8   |     29    |
|    Vicuna -13B-v1.5   |    30.6   |    23.6   |     35    |    28.3   |    36.1   |    37.5   |  45.5 |   39.8   |    37.3   |
|   WizardLM -13B-v1.2  |    22.2   |    20.8   |    32.5   |    19.2   |    28.7   |    25.4   |  29.2 |    33    |    27.8   |
|   LLAMA -2-chat -70B  |    34.7   |    33.3   |    36.7   |    35.8   |    51.4   |    54.2   |  47.2 |   47.7   |    45.9   |
|       AUTO -J (13b)       |    45.8   |    38.9   |  **59.2** |    47.5   |    54.6   |    57.1   |  **58**  |   57.6    |    54.8   |
|       UltraRM (13b)       |    56.94  |    43.06  |    55.0   |    53.33  | **67.13** | **64.17** |   56.25  |   59.85   |    **59.85**   |
|         **PairRM (0.4b)**       | **56.94** | **52.78** | 58.33 | **55.83** |   61.57   | 59.17 | 57.64 | **62.5** | 59.05 |

#### HHH-Alignment and MT-bench human judgements

|        Evaluator LM       | HHH ALIGNMENT |           |           |          |             | MT BENCH HUMAN JUDG . |
|:-------------------------:|:-------------:|:---------:|:---------:|:--------:|:-----------:|:---------------------:|
|                           |     Help .    |   Harm .  |   Hon .   |   Other  | Total Avg . |    Human Preference   |
|           RANDOM          |       50      |     50    |     50    |    50    |      50     |         34.26         |
|  STANFORDNLP REWARD MODEL |     69.49     |   60.34   |   52.46   |   51.16  |    58.82    |         44.79         |
|    ALMOST REWARD MODEL    |     74.58     |   67.24   |   78.69   |   86.05  |    76.02    |          49.9         |
|      LLAMA2 -CHAT 7B      |      66.1     |   81.03   |   70.49   |   74.42  |    72.85    |         51.78         |
|      LLAMA2 -CHAT 13B     |     74.58     |   87.93   |   55.74   |   79.07  |    73.76    |         52.34         |
|      LLAMA2 -CHAT 70B     |      66.1     |   **89.66**   |   67.21   |   74.42  |    74.21    |         53.67         |
| LLAMA2 -CHAT 13B+COARSE . |     68.74     |   68.97   |   65.57   |   67.44  |    67.42    |         46.89         |
|    GPT -3.5-TURBO -0613   |     76.27     |   87.93   |   67.21   |   86.05  |    78.73    |         57.12         |
|       PROMETHEUS 7B       |     69.49     |   84.48   |   78.69   |   90.7   |    80.09    |         55.14         |
|       PROMETHEUS 13B      |     81.36     |   82.76   |   75.41   |   76.74  |    79.19    |         57.72         |
|           UltraRM (13B)   |   **86.44**   |   79.31   | **81.97** |   88.37  |    83.71    |           56          |
|   **PairRM (0.4B)**       |     84.75     |   84.48   |   80.33   | **90.7** |  **84.62**  |         **59**        |
|        GPT -4-0613        |     91.53     |    93.1   |   85.25   |   83.72  |    88.69    |         63.87         |

**While PairRM is a extremely small model (0.4B) based on deberta, the pairwise comparison aggrement performance approches GPT-4's performance!**

Two reasons to attribute:
- Our PairRM specically designed model arch for pairwise comparison through bidirectional attention (See LLM-blender paper for more details)
- The high-quality and large-scale human preference annotation data it was train on (see training dataset list on this hugging face page)






## Citation & Credits 
If you are using PairRM in your research, please cite LLM-blender.
```bibtex
@inproceedings{llm-blender-2023,
    title = "LLM-Blender: Ensembling Large Language Models with Pairwise Comparison and Generative Fusion",
    author = "Jiang, Dongfu and Ren, Xiang and Lin, Bill Yuchen",
    booktitle = "Proceedings of the 61th Annual Meeting of the Association for Computational Linguistics (ACL 2023)",
    year = "2023"
}

```