Commit
•
ee5d4ef
1
Parent(s):
1881086
update README (#1)
Browse files- update README (2579df16b27d26f15371480035b35eca8a04ba81)
Co-authored-by: Will Berman <[email protected]>
- README.md +18 -318
- controlnet_utils.py +0 -40
- images/bag.png +0 -0
- images/bag_scribble.png +0 -0
- images/bag_scribble_out.png +0 -0
- images/bird_canny_out.png +0 -0
- images/chef_pose_out.png +0 -0
- images/house.png +0 -0
- images/house_seg.png +0 -0
- images/house_seg_out.png +0 -0
- images/man.png +0 -0
- images/man_hed.png +0 -0
- images/man_hed_out.png +0 -0
- images/openpose.png +0 -0
- images/pose.png +0 -0
- images/room.png +0 -0
- images/room_mlsd.png +0 -0
- images/room_mlsd_out.png +0 -0
- images/stormtrooper.png +0 -0
- images/stormtrooper_depth.png +0 -0
- images/stormtrooper_depth_out.png +0 -0
- images/toy.png +0 -0
- images/toy_normal.png +0 -0
- images/toy_normal_out.png +0 -0
README.md
CHANGED
@@ -18,10 +18,12 @@ Controlnet's auxiliary models are trained with stable diffusion 1.5. Experimenta
|
|
18 |
The auxiliary conditioning is passed directly to the diffusers pipeline. If you want to process an image to create the auxiliary conditioning, external dependencies are required.
|
19 |
|
20 |
Some of the additional conditionings can be extracted from images via additional models. We extracted these
|
21 |
-
additional models from the original controlnet repo into a separate package that can be found on [github](https://github.com/patrickvonplaten/
|
22 |
|
23 |
## Canny edge detection
|
24 |
|
|
|
|
|
25 |
Install opencv
|
26 |
|
27 |
```sh
|
@@ -31,7 +33,7 @@ $ pip install opencv-contrib-python
|
|
31 |
```python
|
32 |
import cv2
|
33 |
from PIL import Image
|
34 |
-
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
35 |
import torch
|
36 |
import numpy as np
|
37 |
|
@@ -47,15 +49,23 @@ image = np.concatenate([image, image, image], axis=2)
|
|
47 |
image = Image.fromarray(image)
|
48 |
|
49 |
controlnet = ControlNetModel.from_pretrained(
|
50 |
-
"fusing/stable-diffusion-v1-5-controlnet-canny",
|
51 |
)
|
52 |
|
53 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
54 |
-
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
|
55 |
)
|
56 |
-
pipe.to('cuda')
|
57 |
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
image.save('images/bird_canny_out.png')
|
61 |
```
|
@@ -66,316 +76,6 @@ image.save('images/bird_canny_out.png')
|
|
66 |
|
67 |
![bird_canny_out](./images/bird_canny_out.png)
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
Install the additional controlnet models package.
|
72 |
-
|
73 |
-
```sh
|
74 |
-
$ pip install git+https://github.com/patrickvonplaten/human_pose.git
|
75 |
-
```
|
76 |
-
|
77 |
-
```py
|
78 |
-
from PIL import Image
|
79 |
-
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
80 |
-
import torch
|
81 |
-
from human_pose import MLSDdetector
|
82 |
-
|
83 |
-
mlsd = MLSDdetector.from_pretrained('lllyasviel/ControlNet')
|
84 |
-
|
85 |
-
image = Image.open('images/room.png')
|
86 |
-
|
87 |
-
image = mlsd(image)
|
88 |
-
|
89 |
-
controlnet = ControlNetModel.from_pretrained(
|
90 |
-
"fusing/stable-diffusion-v1-5-controlnet-mlsd",
|
91 |
-
)
|
92 |
-
|
93 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
94 |
-
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
|
95 |
-
)
|
96 |
-
pipe.to('cuda')
|
97 |
-
|
98 |
-
image = pipe("room", image).images[0]
|
99 |
-
|
100 |
-
image.save('images/room_mlsd_out.png')
|
101 |
-
```
|
102 |
-
|
103 |
-
![room](./images/room.png)
|
104 |
-
|
105 |
-
![room_mlsd](./images/room_mlsd.png)
|
106 |
-
|
107 |
-
![room_mlsd_out](./images/room_mlsd_out.png)
|
108 |
-
|
109 |
-
## Pose estimation
|
110 |
-
|
111 |
-
Install the additional controlnet models package.
|
112 |
-
|
113 |
-
```sh
|
114 |
-
$ pip install git+https://github.com/patrickvonplaten/human_pose.git
|
115 |
-
```
|
116 |
-
|
117 |
-
```py
|
118 |
-
from PIL import Image
|
119 |
-
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
120 |
-
import torch
|
121 |
-
from human_pose import OpenposeDetector
|
122 |
-
|
123 |
-
openpose = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')
|
124 |
-
|
125 |
-
image = Image.open('images/pose.png')
|
126 |
-
|
127 |
-
image = openpose(image)
|
128 |
-
|
129 |
-
controlnet = ControlNetModel.from_pretrained(
|
130 |
-
"fusing/stable-diffusion-v1-5-controlnet-openpose",
|
131 |
-
)
|
132 |
-
|
133 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
134 |
-
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
|
135 |
-
)
|
136 |
-
pipe.to('cuda')
|
137 |
-
|
138 |
-
image = pipe("chef in the kitchen", image).images[0]
|
139 |
-
|
140 |
-
image.save('images/chef_pose_out.png')
|
141 |
-
```
|
142 |
-
|
143 |
-
![pose](./images/pose.png)
|
144 |
-
|
145 |
-
![openpose](./images/openpose.png)
|
146 |
-
|
147 |
-
![chef_pose_out](./images/chef_pose_out.png)
|
148 |
-
|
149 |
-
## Semantic Segmentation
|
150 |
-
|
151 |
-
Semantic segmentation relies on transformers. Transformers is a
|
152 |
-
dependency of diffusers for running controlnet, so you should
|
153 |
-
have it installed already.
|
154 |
-
|
155 |
-
```py
|
156 |
-
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
|
157 |
-
from PIL import Image
|
158 |
-
import numpy as np
|
159 |
-
from controlnet_utils import ade_palette
|
160 |
-
import torch
|
161 |
-
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
162 |
-
|
163 |
-
image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
|
164 |
-
image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")
|
165 |
-
|
166 |
-
image = Image.open("./images/house.png").convert('RGB')
|
167 |
-
|
168 |
-
pixel_values = image_processor(image, return_tensors="pt").pixel_values
|
169 |
-
|
170 |
-
with torch.no_grad():
|
171 |
-
outputs = image_segmentor(pixel_values)
|
172 |
-
|
173 |
-
seg = image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
|
174 |
-
|
175 |
-
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
|
176 |
-
|
177 |
-
palette = np.array(ade_palette())
|
178 |
-
|
179 |
-
for label, color in enumerate(palette):
|
180 |
-
color_seg[seg == label, :] = color
|
181 |
-
|
182 |
-
color_seg = color_seg.astype(np.uint8)
|
183 |
-
|
184 |
-
image = Image.fromarray(color_seg)
|
185 |
-
|
186 |
-
controlnet = ControlNetModel.from_pretrained(
|
187 |
-
"fusing/stable-diffusion-v1-5-controlnet-seg",
|
188 |
-
)
|
189 |
-
|
190 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
191 |
-
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
|
192 |
-
)
|
193 |
-
pipe.to('cuda')
|
194 |
-
|
195 |
-
image = pipe("house", image).images[0]
|
196 |
-
|
197 |
-
image.save('./images/house_seg_out.png')
|
198 |
-
```
|
199 |
-
|
200 |
-
![house](images/house.png)
|
201 |
-
|
202 |
-
![house_seg](images/house_seg.png)
|
203 |
-
|
204 |
-
![house_seg_out](images/house_seg_out.png)
|
205 |
-
|
206 |
-
## Depth control
|
207 |
-
|
208 |
-
Depth control relies on transformers. Transformers is a dependency of diffusers for running controlnet, so
|
209 |
-
you should have it installed already.
|
210 |
-
|
211 |
-
```py
|
212 |
-
from transformers import pipeline
|
213 |
-
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
214 |
-
from PIL import Image
|
215 |
-
import numpy as np
|
216 |
-
|
217 |
-
depth_estimator = pipeline('depth-estimation')
|
218 |
-
|
219 |
-
image = Image.open('./images/stormtrooper.png')
|
220 |
-
image = depth_estimator(image)['depth']
|
221 |
-
image = np.array(image)
|
222 |
-
image = image[:, :, None]
|
223 |
-
image = np.concatenate([image, image, image], axis=2)
|
224 |
-
image = Image.fromarray(image)
|
225 |
-
|
226 |
-
controlnet = ControlNetModel.from_pretrained(
|
227 |
-
"fusing/stable-diffusion-v1-5-controlnet-depth",
|
228 |
-
)
|
229 |
-
|
230 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
231 |
-
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
|
232 |
-
)
|
233 |
-
pipe.to('cuda')
|
234 |
-
|
235 |
-
image = pipe("Stormtrooper's lecture", image).images[0]
|
236 |
-
|
237 |
-
image.save('./images/stormtrooper_depth_out.png')
|
238 |
-
```
|
239 |
-
|
240 |
-
![stormtrooper](./images/stormtrooper.png)
|
241 |
-
|
242 |
-
![stormtrooler_depth](./images/stormtrooper_depth.png)
|
243 |
-
|
244 |
-
![stormtrooler_depth_out](./images/stormtrooper_depth_out.png)
|
245 |
-
|
246 |
-
|
247 |
-
## Normal map
|
248 |
-
|
249 |
-
```py
|
250 |
-
from PIL import Image
|
251 |
-
from transformers import pipeline
|
252 |
-
import numpy as np
|
253 |
-
import cv2
|
254 |
-
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
255 |
-
|
256 |
-
image = Image.open("images/toy.png").convert("RGB")
|
257 |
-
|
258 |
-
depth_estimator = pipeline("depth-estimation", model ="Intel/dpt-hybrid-midas" )
|
259 |
-
|
260 |
-
image = depth_estimator(image)['predicted_depth'][0]
|
261 |
-
|
262 |
-
image = image.numpy()
|
263 |
-
|
264 |
-
image_depth = image.copy()
|
265 |
-
image_depth -= np.min(image_depth)
|
266 |
-
image_depth /= np.max(image_depth)
|
267 |
-
|
268 |
-
bg_threhold = 0.4
|
269 |
-
|
270 |
-
x = cv2.Sobel(image, cv2.CV_32F, 1, 0, ksize=3)
|
271 |
-
x[image_depth < bg_threhold] = 0
|
272 |
-
|
273 |
-
y = cv2.Sobel(image, cv2.CV_32F, 0, 1, ksize=3)
|
274 |
-
y[image_depth < bg_threhold] = 0
|
275 |
-
|
276 |
-
z = np.ones_like(x) * np.pi * 2.0
|
277 |
-
|
278 |
-
image = np.stack([x, y, z], axis=2)
|
279 |
-
image /= np.sum(image ** 2.0, axis=2, keepdims=True) ** 0.5
|
280 |
-
image = (image * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
|
281 |
-
image = Image.fromarray(image)
|
282 |
-
|
283 |
-
controlnet = ControlNetModel.from_pretrained(
|
284 |
-
"fusing/stable-diffusion-v1-5-controlnet-normal",
|
285 |
-
)
|
286 |
-
|
287 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
288 |
-
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
|
289 |
-
)
|
290 |
-
pipe.to('cuda')
|
291 |
-
|
292 |
-
image = pipe("cute toy", image).images[0]
|
293 |
-
|
294 |
-
image.save('images/toy_normal_out.png')
|
295 |
-
```
|
296 |
-
|
297 |
-
![toy](./images/toy.png)
|
298 |
-
|
299 |
-
![toy_normal](./images/toy_normal.png)
|
300 |
-
|
301 |
-
![toy_normal_out](./images/toy_normal_out.png)
|
302 |
-
|
303 |
-
## Scribble
|
304 |
-
|
305 |
-
Install the additional controlnet models package.
|
306 |
-
|
307 |
-
```sh
|
308 |
-
$ pip install git+https://github.com/patrickvonplaten/human_pose.git
|
309 |
-
```
|
310 |
-
|
311 |
-
```py
|
312 |
-
from PIL import Image
|
313 |
-
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
314 |
-
import torch
|
315 |
-
from human_pose import HEDdetector
|
316 |
-
|
317 |
-
hed = HEDdetector.from_pretrained('lllyasviel/ControlNet')
|
318 |
-
|
319 |
-
image = Image.open('images/bag.png')
|
320 |
-
|
321 |
-
image = hed(image, scribble=True)
|
322 |
-
|
323 |
-
controlnet = ControlNetModel.from_pretrained(
|
324 |
-
"fusing/stable-diffusion-v1-5-controlnet-scribble",
|
325 |
-
)
|
326 |
-
|
327 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
328 |
-
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
|
329 |
-
)
|
330 |
-
pipe.to('cuda')
|
331 |
-
|
332 |
-
image = pipe("bag", image).images[0]
|
333 |
-
|
334 |
-
image.save('images/bag_scribble_out.png')
|
335 |
-
```
|
336 |
-
|
337 |
-
![bag](./images/bag.png)
|
338 |
-
|
339 |
-
![bag_scribble](./images/bag_scribble.png)
|
340 |
-
|
341 |
-
![bag_scribble_out](./images/bag_scribble_out.png)
|
342 |
-
|
343 |
-
## HED Boundary
|
344 |
-
|
345 |
-
Install the additional controlnet models package.
|
346 |
-
|
347 |
-
```sh
|
348 |
-
$ pip install git+https://github.com/patrickvonplaten/human_pose.git
|
349 |
-
```
|
350 |
-
|
351 |
-
```py
|
352 |
-
from PIL import Image
|
353 |
-
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
354 |
-
import torch
|
355 |
-
from human_pose import HEDdetector
|
356 |
-
|
357 |
-
hed = HEDdetector.from_pretrained('lllyasviel/ControlNet')
|
358 |
-
|
359 |
-
image = Image.open('images/man.png')
|
360 |
-
|
361 |
-
image = hed(image)
|
362 |
-
|
363 |
-
controlnet = ControlNetModel.from_pretrained(
|
364 |
-
"fusing/stable-diffusion-v1-5-controlnet-hed",
|
365 |
-
)
|
366 |
-
|
367 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
368 |
-
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
|
369 |
-
)
|
370 |
-
pipe.to('cuda')
|
371 |
-
|
372 |
-
image = pipe("oil painting of handsome old man, masterpiece", image).images[0]
|
373 |
-
|
374 |
-
image.save('images/man_hed_out.png')
|
375 |
-
```
|
376 |
-
|
377 |
-
![man](./images/man.png)
|
378 |
-
|
379 |
-
![man_hed](./images/man_hed.png)
|
380 |
|
381 |
-
|
|
|
18 |
The auxiliary conditioning is passed directly to the diffusers pipeline. If you want to process an image to create the auxiliary conditioning, external dependencies are required.
|
19 |
|
20 |
Some of the additional conditionings can be extracted from images via additional models. We extracted these
|
21 |
+
additional models from the original controlnet repo into a separate package that can be found on [github](https://github.com/patrickvonplaten/controlnet_aux.git).
|
22 |
|
23 |
## Canny edge detection
|
24 |
|
25 |
+
### Diffusers
|
26 |
+
|
27 |
Install opencv
|
28 |
|
29 |
```sh
|
|
|
33 |
```python
|
34 |
import cv2
|
35 |
from PIL import Image
|
36 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
|
37 |
import torch
|
38 |
import numpy as np
|
39 |
|
|
|
49 |
image = Image.fromarray(image)
|
50 |
|
51 |
controlnet = ControlNetModel.from_pretrained(
|
52 |
+
"fusing/stable-diffusion-v1-5-controlnet-canny", torch_dtype=torch.float16
|
53 |
)
|
54 |
|
55 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
56 |
+
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16
|
57 |
)
|
|
|
58 |
|
59 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
60 |
+
|
61 |
+
# Remove if you do not have xformers installed
|
62 |
+
# see https://huggingface.co/docs/diffusers/v0.13.0/en/optimization/xformers#installing-xformers
|
63 |
+
# for installation instructions
|
64 |
+
pipe.enable_xformers_memory_efficient_attention()
|
65 |
+
|
66 |
+
pipe.enable_model_cpu_offload()
|
67 |
+
|
68 |
+
image = pipe("bird", image, num_inference_steps=20).images[0]
|
69 |
|
70 |
image.save('images/bird_canny_out.png')
|
71 |
```
|
|
|
76 |
|
77 |
![bird_canny_out](./images/bird_canny_out.png)
|
78 |
|
79 |
+
### Training
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
+
The canny edge model was trained on 3M edge-image, caption pairs. The model was trained for 600 GPU-hours with Nvidia A100 80G using Stable Diffusion 1.5 as a base model.
|
controlnet_utils.py
DELETED
@@ -1,40 +0,0 @@
|
|
1 |
-
def ade_palette():
|
2 |
-
"""ADE20K palette that maps each class to RGB values."""
|
3 |
-
return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
|
4 |
-
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
|
5 |
-
[230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
|
6 |
-
[150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
|
7 |
-
[143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
|
8 |
-
[0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
|
9 |
-
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
|
10 |
-
[255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
|
11 |
-
[255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
|
12 |
-
[224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
|
13 |
-
[255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
|
14 |
-
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
|
15 |
-
[140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
|
16 |
-
[255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
|
17 |
-
[255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
|
18 |
-
[11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
|
19 |
-
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
|
20 |
-
[255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
|
21 |
-
[0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
|
22 |
-
[173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
|
23 |
-
[255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
|
24 |
-
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
|
25 |
-
[255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
|
26 |
-
[0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
|
27 |
-
[0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
|
28 |
-
[143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
|
29 |
-
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
|
30 |
-
[255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
|
31 |
-
[92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
|
32 |
-
[163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
|
33 |
-
[255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
|
34 |
-
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
|
35 |
-
[10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
|
36 |
-
[255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
|
37 |
-
[41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
|
38 |
-
[71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
|
39 |
-
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
|
40 |
-
[102, 255, 0], [92, 0, 255]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
images/bag.png
DELETED
Binary file (462 kB)
|
|
images/bag_scribble.png
DELETED
Binary file (11 kB)
|
|
images/bag_scribble_out.png
DELETED
Binary file (556 kB)
|
|
images/bird_canny_out.png
CHANGED
images/chef_pose_out.png
DELETED
Binary file (570 kB)
|
|
images/house.png
DELETED
Binary file (391 kB)
|
|
images/house_seg.png
DELETED
Binary file (3.68 kB)
|
|
images/house_seg_out.png
DELETED
Binary file (472 kB)
|
|
images/man.png
DELETED
Binary file (773 kB)
|
|
images/man_hed.png
DELETED
Binary file (118 kB)
|
|
images/man_hed_out.png
DELETED
Binary file (737 kB)
|
|
images/openpose.png
DELETED
Binary file (6.55 kB)
|
|
images/pose.png
DELETED
Binary file (592 kB)
|
|
images/room.png
DELETED
Binary file (637 kB)
|
|
images/room_mlsd.png
DELETED
Binary file (9.06 kB)
|
|
images/room_mlsd_out.png
DELETED
Binary file (575 kB)
|
|
images/stormtrooper.png
DELETED
Binary file (218 kB)
|
|
images/stormtrooper_depth.png
DELETED
Binary file (54.1 kB)
|
|
images/stormtrooper_depth_out.png
DELETED
Binary file (343 kB)
|
|
images/toy.png
DELETED
Binary file (312 kB)
|
|
images/toy_normal.png
DELETED
Binary file (90.1 kB)
|
|
images/toy_normal_out.png
DELETED
Binary file (231 kB)
|
|