|
|
|
|
|
|
|
|
|
import math |
|
import warnings |
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss |
|
from torch.nn import functional as F |
|
|
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
CausalLMOutputWithCrossAttentions, |
|
QuestionAnsweringModelOutput, |
|
SequenceClassifierOutputWithPast, |
|
TokenClassifierOutput, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import logging |
|
from configuration_RW import RWConfig |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
class Linear(nn.Linear): |
|
def forward(self, input: torch.Tensor) -> torch.Tensor: |
|
ret = input @ self.weight.T |
|
if self.bias is None: |
|
return ret |
|
else: |
|
return ret + self.bias |
|
|
|
|
|
from einops import rearrange |
|
|
|
|
|
def rotate_half(x): |
|
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=x1.ndim - 1) |
|
|
|
|
|
class RotaryEmbedding(torch.nn.Module): |
|
"""Implementation of RotaryEmbedding from GPT-NeoX. |
|
This implementation is design to operate on queries and keys that are compatible with |
|
[batch_size, n_heads_per_partition, seq_len, head_dim] (e.g. MinGPTAttention format). |
|
""" |
|
|
|
def __init__( |
|
self, |
|
head_dim: int, |
|
base=10000, |
|
): |
|
super().__init__() |
|
inv_freq = 1.0 / (base ** (torch.arange(0, head_dim, 2).float() / head_dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
self.head_dim = head_dim |
|
self.seq_len_cached = None |
|
self.batch_size_cached = None |
|
self.cos_cached: torch.Tensor | None = None |
|
self.sin_cached: torch.Tensor | None = None |
|
|
|
def cos_sin( |
|
self, |
|
seq_len: int, |
|
device="cuda", |
|
dtype=torch.bfloat16, |
|
) -> torch.Tensor: |
|
if seq_len != self.seq_len_cached: |
|
self.seq_len_cached = seq_len |
|
t = torch.arange(seq_len, device=device).type_as(self.inv_freq) |
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
emb = torch.cat((freqs, freqs), dim=-1).to(device) |
|
|
|
if dtype in [torch.float16, torch.bfloat16]: |
|
emb = emb.float() |
|
|
|
self.cos_cached = emb.cos()[None, :, :] |
|
self.sin_cached = emb.sin()[None, :, :] |
|
|
|
self.cos_cached = self.cos_cached.type(dtype) |
|
self.sin_cached = self.sin_cached.type(dtype) |
|
|
|
return self.cos_cached, self.sin_cached |
|
|
|
def forward(self, q, k): |
|
batch, seq_len, head_dim = q.shape |
|
cos, sin = self.cos_sin(seq_len, q.device, q.dtype) |
|
return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin) |
|
|
|
|
|
def _make_causal_mask( |
|
input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int |
|
) -> torch.BoolTensor: |
|
batch_size, target_length = input_ids_shape |
|
mask = torch.empty((target_length, target_length + past_key_values_length), dtype=torch.bool, device=device) |
|
|
|
seq_ids = torch.arange(target_length, device=device) |
|
mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :] |
|
|
|
if past_key_values_length > 0: |
|
mask[:, :past_key_values_length] = False |
|
|
|
expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length) |
|
return expanded_mask |
|
|
|
|
|
def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor: |
|
batch_size, src_length = mask.shape |
|
tgt_length = tgt_length if tgt_length is not None else src_length |
|
|
|
expanded_mask = ~(mask[:, None, None, :].to(torch.bool)) |
|
return expanded_mask.expand(batch_size, 1, tgt_length, src_length) |
|
|
|
|
|
def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor: |
|
batch_size, seq_length = attention_mask.shape |
|
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads)) |
|
base = torch.tensor( |
|
2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 |
|
) |
|
powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32) |
|
slopes = torch.pow(base, powers) |
|
|
|
if closest_power_of_2 != num_heads: |
|
extra_base = torch.tensor( |
|
2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 |
|
) |
|
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2) |
|
extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32) |
|
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :] |
|
alibi = slopes[..., None].bfloat16() * arange_tensor |
|
return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype) |
|
|
|
|
|
def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor: |
|
out = F.dropout(x, p=prob, training=training) |
|
out = residual + out |
|
return out |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, config: RWConfig): |
|
super().__init__() |
|
|
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.n_head |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.split_size = self.hidden_size |
|
self.hidden_dropout = config.hidden_dropout |
|
|
|
if self.head_dim * self.num_heads != self.hidden_size: |
|
raise ValueError( |
|
f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:" |
|
f" {self.num_heads})." |
|
) |
|
|
|
self.maybe_rotary = RotaryEmbedding(config.head_dim) if config.rotary else lambda q, k: (q, k) |
|
|
|
|
|
self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim) |
|
self.beta = self.inv_norm_factor |
|
self.num_kv = config.n_head if not config.multi_query else config.n_head_kv |
|
self.query_key_value = Linear( |
|
self.hidden_size, |
|
(self.num_kv * 2 + config.n_head) * self.head_dim, |
|
bias=config.bias, |
|
) |
|
self.multi_query = config.multi_query |
|
self.dense = Linear(self.hidden_size, self.hidden_size, bias=config.bias) |
|
self.attention_dropout = nn.Dropout(config.attention_dropout) |
|
|
|
|
|
def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
""" |
|
Split the last dimension into (num_heads, head_dim) without making any copies, results share same memory |
|
storage as `fused_qkv` |
|
|
|
Args: |
|
fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, (num_heads + 2 * num_kv) * head_dim] |
|
|
|
Returns: |
|
query: [batch_size, seq_length, num_heads, head_dim] |
|
key: [batch_size, seq_length, num_heads, head_dim] |
|
value: [batch_size, seq_length, num_heads, head_dim] |
|
""" |
|
if not self.multi_query: |
|
batch_size, seq_length, _ = fused_qkv.shape |
|
fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, 3, self.head_dim) |
|
return fused_qkv[..., 0, :], fused_qkv[..., 1, :], fused_qkv[..., 2, :] |
|
else: |
|
batch, seq_len, _ = fused_qkv.shape |
|
qkv = fused_qkv.view(batch, seq_len, -1, self.num_heads // self.num_kv + 2, 64) |
|
q = qkv[:, :, :, :-2] |
|
k = qkv[:, :, :, [-2]] |
|
v = qkv[:, :, :, [-1]] |
|
k = torch.broadcast_to(k, q.shape) |
|
v = torch.broadcast_to(v, q.shape) |
|
|
|
|
|
q, k, v = [ |
|
rearrange( |
|
x, |
|
"batch seq_len group num_heads head_dim ->\ |
|
batch seq_len (group num_heads) head_dim", |
|
head_dim=self.head_dim, |
|
) |
|
for x in [q, k, v] |
|
] |
|
return q, k, v |
|
|
|
def _merge_heads(self, x: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Merge heads together over the last dimenstion |
|
|
|
Args: |
|
x: (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim] |
|
|
|
Returns: |
|
torch.tensor: [batch_size, seq_length, num_heads * head_dim] |
|
""" |
|
|
|
|
|
batch_size_and_num_heads, seq_length, _ = x.shape |
|
batch_size = batch_size_and_num_heads // self.num_heads |
|
|
|
|
|
|
|
x = x.view(batch_size, self.num_heads, seq_length, self.head_dim) |
|
|
|
|
|
x = x.permute(0, 2, 1, 3) |
|
|
|
|
|
return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
alibi: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
use_cache: bool = False, |
|
output_attentions: bool = False, |
|
): |
|
fused_qkv = self.query_key_value(hidden_states) |
|
|
|
|
|
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv) |
|
|
|
batch_size, q_length, _, _ = query_layer.shape |
|
|
|
query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim) |
|
key_layer = key_layer.transpose(1, 2).reshape( |
|
batch_size * self.num_heads, |
|
q_length, |
|
self.head_dim, |
|
) |
|
value_layer = value_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim) |
|
|
|
query_layer, key_layer = self.maybe_rotary(query_layer, key_layer) |
|
|
|
if layer_past is not None: |
|
past_key, past_value = layer_past |
|
|
|
|
|
|
|
key_layer = torch.cat((past_key, key_layer), dim=1) |
|
value_layer = torch.cat((past_value, value_layer), dim=1) |
|
|
|
_, kv_length, _ = key_layer.shape |
|
|
|
if use_cache is True: |
|
present = (key_layer, value_layer) |
|
else: |
|
present = None |
|
|
|
if alibi is None: |
|
query_layer_ = query_layer.reshape(batch_size, self.num_heads, -1, self.head_dim) |
|
key_layer_ = key_layer.reshape(batch_size, self.num_kv, -1, self.head_dim) |
|
value_layer_ = value_layer.reshape(batch_size, self.num_kv, -1, self.head_dim) |
|
|
|
attn_output = F.scaled_dot_product_attention( |
|
query_layer_, key_layer_, value_layer_, None, 0.0, is_causal=True |
|
) |
|
|
|
x = attn_output.view(batch_size, self.num_heads, q_length, self.head_dim) |
|
x = x.permute(0, 2, 1, 3) |
|
attn_output = x.reshape(batch_size, q_length, self.num_heads * self.head_dim) |
|
|
|
output_tensor = self.dense(attn_output) |
|
|
|
outputs = (output_tensor, present) |
|
assert not output_attentions |
|
return outputs |
|
else: |
|
attention_mask_float = (attention_mask * 1.0).masked_fill(attention_mask, -1e9).to(torch.bfloat16) |
|
matmul_result = query_layer @ key_layer.transpose(-1, -2) |
|
|
|
|
|
attention_scores = matmul_result.view(batch_size, self.num_heads, q_length, kv_length) |
|
|
|
|
|
input_dtype = attention_scores.dtype |
|
|
|
if input_dtype == torch.float16 or input_dtype == torch.bfloat16: |
|
attention_scores = attention_scores.to(torch.float32) |
|
|
|
attention_probs = F.softmax( |
|
(attention_scores + alibi) * self.inv_norm_factor + attention_mask_float, |
|
dim=-1, |
|
dtype=hidden_states.dtype, |
|
) |
|
|
|
attention_probs = self.attention_dropout(attention_probs) |
|
|
|
if head_mask is not None: |
|
attention_probs = attention_probs * head_mask |
|
|
|
|
|
attention_probs_reshaped = attention_probs.view(batch_size * self.num_heads, q_length, kv_length) |
|
|
|
|
|
context_layer = attention_probs_reshaped @ value_layer |
|
|
|
|
|
context_layer = self._merge_heads(context_layer) |
|
|
|
output_tensor = self.dense(context_layer) |
|
|
|
outputs = (output_tensor, present) |
|
if output_attentions: |
|
outputs += (attention_probs,) |
|
|
|
return outputs |
|
|
|
|
|
class MLP(nn.Module): |
|
def __init__(self, config: RWConfig): |
|
super().__init__() |
|
hidden_size = config.hidden_size |
|
|
|
self.dense_h_to_4h = Linear(hidden_size, 4 * hidden_size, bias=config.bias) |
|
self.act = nn.GELU() |
|
self.dense_4h_to_h = Linear(4 * hidden_size, hidden_size, bias=config.bias) |
|
self.hidden_dropout = config.hidden_dropout |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.act(self.dense_h_to_4h(x)) |
|
x = self.dense_4h_to_h(x) |
|
return x |
|
|
|
|
|
class DecoderLayer(nn.Module): |
|
def __init__(self, config: RWConfig): |
|
super().__init__() |
|
hidden_size = config.hidden_size |
|
|
|
self.ln_attn = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) |
|
self.num_heads = config.n_head |
|
self.self_attention = Attention(config) |
|
|
|
self.ln_mlp = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) |
|
|
|
self.mlp = MLP(config) |
|
|
|
self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm |
|
self.hidden_dropout = config.hidden_dropout |
|
|
|
self.config = config |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
alibi: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
use_cache: bool = False, |
|
output_attentions: bool = False, |
|
): |
|
|
|
|
|
|
|
layernorm_output = self.ln_attn(hidden_states) |
|
|
|
|
|
residual = hidden_states |
|
|
|
|
|
attn_outputs = self.self_attention( |
|
layernorm_output, |
|
layer_past=layer_past, |
|
attention_mask=attention_mask, |
|
alibi=alibi, |
|
head_mask=head_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
attention_output = attn_outputs[0] |
|
|
|
if not self.config.parallel_attn: |
|
residual = dropout_add(attention_output, residual, self.config.attention_dropout, training=self.training) |
|
layernorm_output = self.ln_mlp(residual) |
|
elif not self.config.single_ln: |
|
layernorm_output = self.ln_mlp(residual) |
|
|
|
outputs = attn_outputs[1:] |
|
|
|
|
|
mlp_output = self.mlp(layernorm_output) |
|
|
|
if self.config.parallel_attn: |
|
mlp_output += attention_output |
|
|
|
output = dropout_add(mlp_output, residual, self.config.hidden_dropout, training=self.training) |
|
|
|
if use_cache: |
|
outputs = (output,) + outputs |
|
else: |
|
outputs = (output,) + outputs[1:] |
|
|
|
return outputs |
|
|
|
|
|
class RWPreTrainedModel(PreTrainedModel): |
|
_keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"] |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = RWConfig |
|
base_model_prefix = "transformer" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["DecoderLayer"] |
|
|
|
def __init__(self, *inputs, **kwargs): |
|
super().__init__(*inputs, **kwargs) |
|
|
|
def _init_weights(self, module: nn.Module): |
|
"""Initialize the weights.""" |
|
if isinstance(module, nn.Linear) or isinstance(module, Linear): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False): |
|
if isinstance(module, RWModel): |
|
module.gradient_checkpointing = value |
|
|
|
@staticmethod |
|
def _convert_to_standard_cache( |
|
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int |
|
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]: |
|
""" |
|
Standardizes the format of the cache so as to match most implementations, i.e. to tuple(tuple([batch_size, |
|
num_heads, ...])) |
|
""" |
|
batch_size_times_num_heads, head_dim, seq_length = past_key_value[0][0].shape |
|
num_heads = batch_size_times_num_heads // batch_size |
|
|
|
|
|
return tuple( |
|
( |
|
layer_past[0].view(batch_size, num_heads, head_dim, seq_length), |
|
layer_past[1].view(batch_size, num_heads, seq_length, head_dim), |
|
) |
|
for layer_past in past_key_value |
|
) |
|
|
|
@staticmethod |
|
def _convert_to_rw_cache( |
|
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]] |
|
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]: |
|
batch_size, num_heads, head_dim, seq_length = past_key_value[0][0].shape |
|
batch_size_times_num_heads = batch_size * num_heads |
|
|
|
|
|
return tuple( |
|
( |
|
layer_past[0].view(batch_size_times_num_heads, head_dim, seq_length), |
|
layer_past[1].view(batch_size_times_num_heads, seq_length, head_dim), |
|
) |
|
for layer_past in past_key_value |
|
) |
|
|
|
|
|
class RWModel(RWPreTrainedModel): |
|
def __init__(self, config: RWConfig): |
|
super().__init__(config) |
|
|
|
self.embed_dim = config.hidden_size |
|
self.num_heads = config.n_head |
|
self.alibi = config.alibi |
|
|
|
|
|
self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim) |
|
|
|
|
|
self.h = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)]) |
|
|
|
|
|
self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.word_embeddings |
|
|
|
def _prepare_attn_mask( |
|
self, attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int |
|
) -> torch.BoolTensor: |
|
|
|
|
|
combined_attention_mask = None |
|
device = attention_mask.device |
|
_, src_length = input_shape |
|
|
|
if src_length > 1: |
|
combined_attention_mask = _make_causal_mask( |
|
input_shape, device=device, past_key_values_length=past_key_values_length |
|
) |
|
|
|
|
|
expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length) |
|
combined_attention_mask = ( |
|
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask |
|
) |
|
|
|
return combined_attention_mask |
|
|
|
def set_input_embeddings(self, new_embeddings: torch.Tensor): |
|
self.word_embeddings = new_embeddings |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**deprecated_arguments, |
|
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]: |
|
if deprecated_arguments.pop("position_ids", False) is not False: |
|
|
|
warnings.warn( |
|
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" |
|
" passing `position_ids`.", |
|
FutureWarning, |
|
) |
|
if len(deprecated_arguments) > 0: |
|
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
if past_key_values is None: |
|
past_key_values = tuple([None] * len(self.h)) |
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.n_layer) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
presents = () if use_cache else None |
|
all_self_attentions = () if output_attentions else None |
|
all_hidden_states = () if output_hidden_states else None |
|
|
|
|
|
seq_length_with_past = seq_length |
|
past_key_values_length = 0 |
|
if past_key_values[0] is not None: |
|
past_key_values_length = past_key_values[0][0].shape[2] |
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
if attention_mask is None: |
|
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device) |
|
else: |
|
attention_mask = attention_mask.to(hidden_states.device) |
|
|
|
if self.alibi: |
|
alibi = build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype) |
|
else: |
|
alibi = None |
|
|
|
causal_mask = self._prepare_attn_mask( |
|
attention_mask, |
|
input_shape=(batch_size, seq_length), |
|
past_key_values_length=past_key_values_length, |
|
) |
|
|
|
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
if use_cache: |
|
logger.warning( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs, use_cache=use_cache, output_attentions=output_attentions) |
|
|
|
return custom_forward |
|
|
|
outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
hidden_states, |
|
alibi, |
|
causal_mask, |
|
head_mask[i], |
|
) |
|
else: |
|
outputs = block( |
|
hidden_states, |
|
layer_past=layer_past, |
|
attention_mask=causal_mask, |
|
head_mask=head_mask[i], |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
alibi=alibi, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
if use_cache is True: |
|
presents = presents + (outputs[1],) |
|
|
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) |
|
|
|
|
|
hidden_states = self.ln_f(hidden_states) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) |
|
|
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=presents, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
|
|
|
|
class RWForCausalLM(RWPreTrainedModel): |
|
_keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"] |
|
|
|
def __init__(self, config: RWConfig): |
|
super().__init__(config) |
|
self.transformer = RWModel(config) |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings: torch.Tensor): |
|
self.lm_head = new_embeddings |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids: torch.LongTensor, |
|
past: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> dict: |
|
|
|
if past: |
|
input_ids = input_ids[:, -1].unsqueeze(-1) |
|
|
|
|
|
if past[0][0].shape[0] == input_ids.shape[0]: |
|
past = self._convert_to_rw_cache(past) |
|
|
|
return { |
|
"input_ids": input_ids, |
|
"past_key_values": past, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
} |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**deprecated_arguments, |
|
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set |
|
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` |
|
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` |
|
""" |
|
if deprecated_arguments.pop("position_ids", False) is not False: |
|
|
|
warnings.warn( |
|
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" |
|
" passing `position_ids`.", |
|
FutureWarning, |
|
) |
|
if len(deprecated_arguments) > 0: |
|
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = transformer_outputs[0] |
|
|
|
lm_logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = lm_logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
batch_size, seq_length, vocab_size = shift_logits.shape |
|
|
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct( |
|
shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length) |
|
) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return CausalLMOutputWithCrossAttentions( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
def _reorder_cache( |
|
self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor |
|
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]: |
|
""" |
|
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or |
|
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct |
|
beam_idx at every generation step. |
|
|
|
Output shares the same memory storage as `past`. |
|
""" |
|
standardized_past = self._convert_to_standard_cache(past, batch_size=len(beam_idx)) |
|
|
|
|
|
device_to_beam_idx = { |
|
past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past |
|
} |
|
reordered_past = tuple( |
|
( |
|
layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]), |
|
layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]), |
|
) |
|
for layer_past in standardized_past |
|
) |
|
return self._convert_to_rw_cache(reordered_past) |
|
|
|
|
|
class RWForSequenceClassification(RWPreTrainedModel): |
|
_keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"] |
|
|
|
def __init__(self, config: RWConfig): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.transformer = RWModel(config) |
|
self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**deprecated_arguments, |
|
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
if deprecated_arguments.pop("position_ids", False) is not False: |
|
|
|
warnings.warn( |
|
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" |
|
" passing `position_ids`.", |
|
FutureWarning, |
|
) |
|
if len(deprecated_arguments) > 0: |
|
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = transformer_outputs[0] |
|
logits = self.score(hidden_states) |
|
|
|
if input_ids is not None: |
|
batch_size = input_ids.shape[0] |
|
else: |
|
batch_size = inputs_embeds.shape[0] |
|
|
|
if self.config.pad_token_id is None and batch_size != 1: |
|
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") |
|
if self.config.pad_token_id is None: |
|
sequence_lengths = -1 |
|
else: |
|
if input_ids is not None: |
|
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(dim=-1) - 1 |
|
else: |
|
sequence_lengths = -1 |
|
logger.warning( |
|
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " |
|
"unexpected if using padding tokens in conjunction with `inputs_embeds.`" |
|
) |
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(pooled_logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(pooled_logits, labels) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(pooled_logits, labels) |
|
if not return_dict: |
|
output = (pooled_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutputWithPast( |
|
loss=loss, |
|
logits=pooled_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
|
|
class RWForTokenClassification(RWPreTrainedModel): |
|
_keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"] |
|
|
|
def __init__(self, config: RWConfig): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
self.transformer = RWModel(config) |
|
if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None: |
|
classifier_dropout = config.classifier_dropout |
|
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None: |
|
classifier_dropout = config.hidden_dropout |
|
else: |
|
classifier_dropout = 0.1 |
|
self.dropout = nn.Dropout(classifier_dropout) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**deprecated_arguments, |
|
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
if deprecated_arguments.pop("position_ids", False) is not False: |
|
|
|
warnings.warn( |
|
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" |
|
" passing `position_ids`.", |
|
FutureWarning, |
|
) |
|
if len(deprecated_arguments) > 0: |
|
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = transformer_outputs[0] |
|
hidden_states = self.dropout(hidden_states) |
|
logits = self.classifier(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
batch_size, seq_length = labels.shape |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)) |
|
|
|
if not return_dict: |
|
output = (logits,) + transformer_outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
|
|
class RWForQuestionAnswering(RWPreTrainedModel): |
|
_keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.transformer = RWModel(config) |
|
self.qa_outputs = nn.Linear(config.hidden_size, 2) |
|
|
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
start_positions: Optional[torch.LongTensor] = None, |
|
end_positions: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, QuestionAnsweringModelOutput]: |
|
r""" |
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the start of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the end of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.transformer( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
logits = self.qa_outputs(sequence_output) |
|
start_logits, end_logits = logits.split(1, dim=-1) |
|
start_logits = start_logits.squeeze(-1).contiguous() |
|
end_logits = end_logits.squeeze(-1).contiguous() |
|
|
|
total_loss = None |
|
if start_positions is not None and end_positions is not None: |
|
|
|
if len(start_positions.size()) > 1: |
|
start_positions = start_positions.squeeze(-1) |
|
if len(end_positions.size()) > 1: |
|
end_positions = end_positions.squeeze(-1) |
|
|
|
ignored_index = start_logits.size(1) |
|
start_positions = start_positions.clamp(0, ignored_index) |
|
end_positions = end_positions.clamp(0, ignored_index) |
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) |
|
start_loss = loss_fct(start_logits, start_positions) |
|
end_loss = loss_fct(end_logits, end_positions) |
|
total_loss = (start_loss + end_loss) / 2 |
|
|
|
if not return_dict: |
|
output = (start_logits, end_logits) + outputs[2:] |
|
return ((total_loss,) + output) if total_loss is not None else output |
|
|
|
return QuestionAnsweringModelOutput( |
|
loss=total_loss, |
|
start_logits=start_logits, |
|
end_logits=end_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|