DanielHesslow
commited on
Commit
•
10da292
1
Parent(s):
257e676
Upload README.md
Browse files
README.md
CHANGED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: protein
|
3 |
+
tags:
|
4 |
+
- protein
|
5 |
+
datasets:
|
6 |
+
- uniref-100
|
7 |
+
---
|
8 |
+
|
9 |
+
# RITA-S
|
10 |
+
|
11 |
+
RITA is a family of autoregressive protein models, developed in collaboration between Lighton, Harvard and Oxford.
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
Model | #Params | d_model | layers | lm loss uniref-100
|
16 |
+
--- | --- | --- | --- | --- |
|
17 |
+
[**Small**](https://huggingface.co/lightonai/RITA_s) | 85M | 768 | 12 | 2.31
|
18 |
+
[Medium](https://huggingface.co/lightonai/RITA_m) | 300M | 1024 | 24 | 2.01
|
19 |
+
[Large](https://huggingface.co/lightonai/RITA_l)| 680M | 1536 | 24 | 1.82
|
20 |
+
[XLarge](https://huggingface.co/lightonai/RITA_xl)| 1.2B | 2048 | 24 | 1.70
|
21 |
+
|
22 |
+
|
23 |
+
# Usage
|
24 |
+
Instantiate a model like so:
|
25 |
+
from transformers import AutoModel, AutoModelForCausalLM
|
26 |
+
model = AutoModelForCausalLM.from_pretrained("Seledorn/RITA_s, trust_remote_code=True")
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained("Seledorn/RITA_s")
|
28 |
+
for generation use we support pipelines:
|
29 |
+
|
30 |
+
|
31 |
+
rita_gen = pipeline('text-generation', model=model, tokenizer = tokenizer)
|
32 |
+
sequences = rita_gen("MAB", max_length=20, do_sample=True, top_k=950, repetition_penalty=1.2, num_return_sequences=2, eos_token_id=2)
|
33 |
+
for seq in sequences:
|
34 |
+
print(f"seq: {seq['generated_text'].replace(' ', '')}")
|