# Copyright 2022 MosaicML Examples authors # SPDX-License-Identifier: Apache-2.0 # Copyright 2023 OLMo Authors # License: Apache-2.0 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # License: Apache-2.0 import math from typing import Optional, Union import torch import torch.nn as nn from .utils import StrEnum from .configuration_bert import FlexBertConfig from .normalization import RMSNorm __all__ = ["init_weights", "ModuleType", "InitFnType"] class InitFnType(StrEnum): mitchell = "mitchell" """ The strategy suggested to us by Mitchell Wortsman from UW. This uses a truncated normal distribution with an adaptive standard deviation that depends on the size of the weights as well as the depth of the layer. """ normal = "normal" """ All weights are initialized from the same normal distribution. """ default = "default" """ All weights are initialized with the default HuggingFace Bert method. Set init_std=0.02 to match. """ kaiming_normal = "kaiming_normal" """ All weights are initialized with the Kaiming method from a normal distribution. Note this currently won't work with FSDP. """ fan_in = "fan_in" """ "Fan-in variance scaling", i.e. normal with a standard deviation of ``1/sqrt(d_in)`` where ``d_in`` is the input dimensionality of the kernel. """ full_megatron = "full_megatron" """ This is what metaseq calls "full megatron init". It is the init used for Llama 2. """ class ModuleType(StrEnum): in_module = "in" out_module = "out" emb = "emb" final_out = "final_out" def init_weights( config: FlexBertConfig, module: Union[nn.Linear, nn.Embedding], layer_dim: Optional[int] = None, layer_id: Optional[int] = None, std_factor: float = 1.0, type_of_module: Optional[ModuleType] = None, ) -> None: """ Initialize weights of a linear or embedding module. :param config: The model config. :param module: The linear or embedding submodule to initialize. :param layer_dim: The effective input dimensionality of the weights. This could be smaller than the actual dimensions for fused layers. :param layer_id: When set, the standard deviation for the "mitchell" method will be adjusted by ``1 / sqrt(2 * (layer_id + 1))``. """ if config.init_method == InitFnType.full_megatron and config.init_small_embedding: raise ValueError("Cannot use 'small_embedding_init' with 'full_megatron' init.") layer_dim = layer_dim if layer_dim is not None else config.hidden_size if config.init_method == InitFnType.normal: std = config.init_std * std_factor if config.init_cutoff_factor is not None: cutoff_value = config.init_cutoff_factor * std nn.init.trunc_normal_(module.weight, mean=0.0, std=std, a=-cutoff_value, b=cutoff_value) else: nn.init.normal_(module.weight, mean=0.0, std=std) elif config.init_method == InitFnType.mitchell: std = std_factor / math.sqrt(layer_dim) if layer_id is not None: std = std / math.sqrt(2 * (layer_id + 1)) nn.init.trunc_normal_(module.weight, mean=0.0, std=std, a=-3 * std, b=3 * std) elif config.init_method == InitFnType.kaiming_normal: nn.init.kaiming_normal_(module.weight, nonlinearity="relu") elif config.init_method == InitFnType.fan_in: std = std_factor / math.sqrt(layer_dim) nn.init.normal_(module.weight, mean=0.0, std=std) elif config.init_method == InitFnType.full_megatron: if type_of_module is None: raise RuntimeError(f"When using the {InitFnType.full_megatron} init, every module must have a type.") cutoff_factor = config.init_cutoff_factor if cutoff_factor is None: cutoff_factor = 3 if type_of_module == ModuleType.in_module: # for att_proj (same as QKV), ff_proj std = config.init_std elif type_of_module == ModuleType.out_module: # for attn_out, ff_out std = config.init_std / math.sqrt(2.0 * config.num_hidden_layers) elif type_of_module == ModuleType.emb: # positional embeddings (wpe) # token embeddings (wte) std = config.init_std elif type_of_module == ModuleType.final_out: # final output (ff_out) std = config.hidden_size**-0.5 else: raise RuntimeError(f"Unknown module type '{type_of_module}'") nn.init.trunc_normal_( module.weight, mean=0.0, std=std, a=-cutoff_factor * std, b=cutoff_factor * std, ) elif config.init_method == InitFnType.default: # default hugging face bert initialization # normalization layers already init to ones and zeros if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=config.init_std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=config.init_std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() else: raise NotImplementedError(config.init_method) if isinstance(module, nn.Linear): if module.bias is not None: nn.init.zeros_(module.bias) if config.init_method == InitFnType.normal and getattr(module, "_is_residual", False): with torch.no_grad(): module.weight.div_(math.sqrt(2 * config.num_hidden_layers)) if isinstance(module, nn.Embedding) and config.init_small_embedding: nn.init.uniform_(module.weight, a=-1e-4, b=1e-4) class TileMode(StrEnum): center_weights = "center_weights" tile_weights_from_edge = "tile_weights_from_edge" tile_weights_from_middle = "tile_weights_from_middle" def tile_weight( pretrained_weights: torch.Tensor, new_weights: torch.Tensor, mode: Union[str, TileMode] = TileMode.tile_weights_from_middle, ) -> torch.Tensor: """ Tile or center an input tensor to a larger desired size. Works for both 2D and 1D tensors. Args: pretrained_weights (torch.Tensor): The input tensor to be tiled or centered (1D or 2D). new_weights (torch.Tensor): The tensor with the desired size. mode (Union[str, TileMode]): 'center_weights', 'tile_weights_from_edge', or 'tile_weights_from_middle' Returns: torch.Tensor: The resulting tensor of the desired size. """ assert pretrained_weights.dim() in (1, 2), "Input tensor must be 1-dimensional or 2-dimensional" if isinstance(mode, str): mode = TileMode(mode) pretrained_weights = pretrained_weights.clone() if pretrained_weights.dim() == 1: return _tile_1d(pretrained_weights, new_weights, mode) else: return _tile_2d(pretrained_weights, new_weights, mode) def _tile_1d(pretrained_weights: torch.Tensor, new_weights: torch.Tensor, mode: TileMode) -> torch.Tensor: assert pretrained_weights.dim() == 1, "Input tensor must be 1-dimensional" input_size = pretrained_weights.shape[0] new_size = new_weights.shape[0] assert new_size >= input_size, "Desired size must be greater than or equal to input size" if mode == TileMode.center_weights: offset = (new_size - input_size) // 2 new_weights[offset : offset + input_size] = pretrained_weights return new_weights.clone() elif mode == TileMode.tile_weights_from_edge: repeat_count = (new_size + input_size - 1) // input_size tiled_tensor = pretrained_weights.repeat(repeat_count) return tiled_tensor[:new_size].clone() elif mode == TileMode.tile_weights_from_middle: # Calculate offsets to center the original tensor offset = (new_size - input_size) // 2 # Create a new tensor with the desired size result = torch.zeros(new_size, dtype=pretrained_weights.dtype, device=pretrained_weights.device) # Place the original tensor in the center result[offset : offset + input_size] = pretrained_weights # Tile the left and right sides for i in range(offset): result[offset - 1 - i] = pretrained_weights[input_size - 1 - (i % input_size)] for i in range(offset + input_size, new_size): result[i] = pretrained_weights[(i - offset) % input_size] return result.clone() def _tile_2d(pretrained_weights: torch.Tensor, new_weights: torch.Tensor, mode: TileMode) -> torch.Tensor: assert pretrained_weights.dim() == 2, "Input tensor must be 2-dimensional" input_height, input_width = pretrained_weights.shape new_height, new_width = new_weights.shape assert new_height >= input_height, "Desired height must be greater than or equal to input height" assert new_width >= input_width, "Desired width must be greater than or equal to input width" if mode == TileMode.center_weights: height_offset = (new_height - input_height) // 2 width_offset = (new_width - input_width) // 2 new_weights[height_offset : height_offset + input_height, width_offset : width_offset + input_width] = pretrained_weights # fmt: skip return new_weights.clone() elif mode == TileMode.tile_weights_from_edge: repeat_height = (new_height + input_height - 1) // input_height repeat_width = (new_width + input_width - 1) // input_width tiled_tensor = pretrained_weights.repeat(repeat_height, repeat_width) return tiled_tensor[:new_height, :new_width].clone() elif mode == TileMode.tile_weights_from_middle: # Calculate offsets to center the original tensor height_offset = (new_height - input_height) // 2 width_offset = (new_width - input_width) // 2 # Create a new tensor with the desired width and input height horizontal_tiled = torch.zeros( input_height, new_width, dtype=pretrained_weights.dtype, device=pretrained_weights.device ) # Place the original tensor in the center horizontally horizontal_tiled[:, width_offset : width_offset + input_width] = pretrained_weights # Tile the left and right sides for i in range(width_offset): horizontal_tiled[:, i] = horizontal_tiled[ :, width_offset + input_width - 1 - (width_offset - i - 1) % input_width ] for i in range(width_offset + input_width, new_width): horizontal_tiled[:, i] = horizontal_tiled[:, width_offset + (i - width_offset) % input_width] # Now tile vertically result = torch.zeros(new_height, new_width, dtype=pretrained_weights.dtype, device=pretrained_weights.device) result[height_offset : height_offset + input_height, :] = horizontal_tiled # Tile top for i in range(height_offset): row_to_copy = (input_height - 1) - (i % input_height) result[height_offset - 1 - i, :] = horizontal_tiled[row_to_copy, :] # Tile bottom for i in range(height_offset + input_height, new_height): row_to_copy = (i - height_offset) % input_height result[i, :] = horizontal_tiled[row_to_copy, :] return result.clone() def tile_fused_qkv( pretrained_qkv_weight: torch.Tensor, new_qkv_weight: torch.Tensor, mode: Union[str, TileMode] = TileMode.tile_weights_from_middle, ): """ Tile the weights of a fused pretrained QKV layer to a new, larger QKV dimension. Args: pretrained_qkv_weight (torch.Tensor): The original fused QKV layer new_qkv_weight (torch.Tensor): The new fused QKV layer with larger linear_dim mode (Union[str, TileMode]): The tiling mode to use Returns: torch.Tensor: The new fused QKV layer with tiled weights """ # Split QKV, assume new_q, new_k, new_v are the same shape pretrained_q, pretrained_k, pretrained_v = pretrained_qkv_weight.chunk(3, dim=0) new_q, new_k, new_v = new_qkv_weight.chunk(3, dim=0) # Tile Q, K, V separately new_q = tile_weight(pretrained_q, new_q, mode=mode) new_k = tile_weight(pretrained_k, new_k, mode=mode) new_v = tile_weight(pretrained_v, new_v, mode=mode) # Concatenate tiled Q, K, V return torch.cat([new_q, new_k, new_v], dim=0) def tile_fused_glu( pretrained_glu_weight: torch.Tensor, new_glu_weight: torch.Tensor, mode: Union[str, TileMode] = TileMode.tile_weights_from_middle, ): """ Tile the weights of a fused pretrained GLU layer to a new, larger GLU dimension. Args: pretrained_glu_weight (torch.Tensor): The original fused GLU layer new_glu_weight (torch.Tensor): The new fused GLU layer with larger linear_dim mode (Union[str, TileMode]): The tiling mode to use Returns: torch.Tensor: The new fused GLU layer with tiled weights """ # Split GLU, assume new_glu_wi, new_glu_wg are the same shape pretrained_glu_wi, pretrained_glu_wg = pretrained_glu_weight.chunk(2, dim=0) new_glu_wi, new_glu_wg = new_glu_weight.chunk(2, dim=0) # Tile GLU separately new_glu_wi = tile_weight(pretrained_glu_wi, new_glu_wi, mode=mode) new_glu_wg = tile_weight(pretrained_glu_wg, new_glu_wg, mode=mode) # Concatenate tiled GLU return torch.cat([new_glu_wi, new_glu_wg], dim=0) def tile_fused_qkvff( pretrained_qkvff_weight: torch.Tensor, new_qkvff_weight: torch.Tensor, pretrained_attn_size: int, pretrained_mlp_size: int, new_attn_size: int, new_mlp_size: int, is_glu: bool = False, mode: Union[str, TileMode] = TileMode.tile_weights_from_middle, ): """ Tile the weights of a fused pretrained QKVFF layer to a new, larger QKVFF dimension. Args: pretrained_qkvff_weight (torch.Tensor): The original fused QKVFF layer new_qkvff_weight (torch.Tensor): The new fused QKVFF layer with larger linear_dim pretrained_attn_size (int): The attention size of the pretrained fused QKVFF layer pretrained_mlp_size (int): The mlp size of the pretrained fused QKVFF layer new_attn_size (int): The attention size of the new fused QKVFF layer new_mlp_size (int): The mlp size of the new fused QKVFF layer is_glu (bool): Whether the QKVFF layer is a GLU layer mode (Union[str, TileMode]): The tiling mode to use Returns: torch.Tensor: The new fused QKVFF layer with tiled weights """ # Split QKVFF pretrained_qkv, pretrained_ff = pretrained_qkvff_weight.split([pretrained_attn_size, pretrained_mlp_size], dim=0) new_qkv, new_ff = new_qkvff_weight.split([new_attn_size, new_mlp_size], dim=0) # Tile QKVFF separately new_qkv = tile_fused_qkv(pretrained_qkv, new_qkv, mode=mode) if is_glu: new_ff = tile_fused_glu(pretrained_ff, new_ff, mode=mode) else: new_ff = tile_weight(pretrained_ff, new_ff, mode=mode) # Concatenate tiled QKVFF return torch.cat([new_qkv, new_ff], dim=0) class TileLinear(StrEnum): wqkv = "wqkv" glu = "glu" wqkvff = "wqkvff" default = "default" def tile_linear( pretrained_linear: nn.Linear, new_linear: nn.Linear, linear_type: Union[str, TileLinear] = TileLinear.default, mode: Union[str, TileMode] = TileMode.tile_weights_from_middle, pretrained_attn_size: Optional[int] = None, pretrained_mlp_size: Optional[int] = None, new_attn_size: Optional[int] = None, new_mlp_size: Optional[int] = None, wqkvff_is_glu: Optional[bool] = None, bias_only: Optional[bool] = False, ): """ Tile the weights of a linear layer to a new, larger linear dimension. Args: pretrained_linear (nn.Linear): The original linear layer new_linear (nn.Linear): The new linear layer with larger linear_dim linear_type (Union[str, TileLinear]): The type of linear layer to tile mode (Union[str, TileMode]): The tiling mode to use pretrained_attn_size (int): The attention size of the pretrained linear layer. Only used if linear_type is wqkvff. pretrained_mlp_size (int): The mlp size of the pretrained linear layer. Only used if linear_type is wqkvff. new_attn_size (int): The attention size of the new linear layer. Only used if linear_type is wqkvff. new_mlp_size (int): The mlp size of the new linear layer. Only used if linear_type is wqkvff. wqkvff_is_glu (bool): Whether the wqkvff layer is a GLU layer. Only used if linear_type is wqkvff. bias_only (bool): Whether to only tile the bias. Only used if tiling weight tied decoder. """ if isinstance(linear_type, str): linear_type = TileLinear(linear_type) if isinstance(mode, str): mode = TileMode(mode) with torch.no_grad(): if linear_type == TileLinear.wqkv: if not bias_only: new_linear.weight = nn.Parameter( tile_fused_qkv(pretrained_linear.weight, new_linear.weight, mode=mode), requires_grad=new_linear.weight.requires_grad, ) if pretrained_linear.bias is not None: new_linear.bias = nn.Parameter( tile_fused_qkv(pretrained_linear.bias, new_linear.bias, mode=mode), requires_grad=new_linear.bias.requires_grad, ) elif linear_type == TileLinear.glu: if not bias_only: new_linear.weight = nn.Parameter( tile_fused_glu(pretrained_linear.weight, new_linear.weight, mode=mode), requires_grad=new_linear.weight.requires_grad, ) if pretrained_linear.bias is not None: new_linear.bias = nn.Parameter( tile_fused_glu(pretrained_linear.bias, new_linear.bias, mode=mode), requires_grad=new_linear.bias.requires_grad, ) elif linear_type == TileLinear.wqkvff: if not bias_only: new_linear.weight = nn.Parameter( tile_fused_qkvff( pretrained_linear.weight, new_linear.weight, pretrained_attn_size, pretrained_mlp_size, new_attn_size, new_mlp_size, wqkvff_is_glu, mode=mode, ), requires_grad=new_linear.weight.requires_grad, ) if pretrained_linear.bias is not None: new_linear.bias = nn.Parameter( tile_fused_qkvff( pretrained_linear.bias, new_linear.bias, pretrained_attn_size, pretrained_mlp_size, new_attn_size, new_mlp_size, wqkvff_is_glu, mode=mode, ), requires_grad=new_linear.bias.requires_grad, ) else: if not bias_only: new_linear.weight = nn.Parameter( tile_weight(pretrained_linear.weight, new_linear.weight, mode=mode), requires_grad=new_linear.weight.requires_grad, ) if pretrained_linear.bias is not None: new_linear.bias = nn.Parameter( tile_weight(pretrained_linear.bias, new_linear.bias, mode=mode), requires_grad=new_linear.bias.requires_grad, ) def tile_norm( pretrained_norm: Union[nn.LayerNorm, RMSNorm, nn.Identity], new_norm: Union[nn.LayerNorm, RMSNorm, nn.Identity], mode: Union[str, TileMode] = TileMode.tile_weights_from_middle, ): """ Tile the weights of a pretrained norm layer to a new, larger layer norm dimension. Args: pretrained_norm (Union[nn.LayerNorm, RMSNorm, nn.Identity]): The original norm layer new_norm (Union[nn.LayerNorm, RMSNorm, nn.Identity]): The new norm layer with larger layer norm dimension mode (Union[str, TileMode]): The Phi-style weight tiling mode to use """ if isinstance(pretrained_norm, nn.Identity): return if isinstance(mode, str): mode = TileMode(mode) with torch.no_grad(): new_norm.weight.data = nn.Parameter( tile_weight(pretrained_norm.weight, new_norm.weight, mode=mode), requires_grad=new_norm.weight.requires_grad, ) if hasattr(pretrained_norm, "bias") and pretrained_norm.bias is not None: new_norm.bias.data = nn.Parameter( tile_weight(pretrained_norm.bias, new_norm.bias, mode=mode), requires_grad=new_norm.bias.requires_grad, ) def tile_embedding( pretrained_embedding: nn.Embedding, new_embedding: nn.Embedding, mode: Union[str, TileMode] = TileMode.tile_weights_from_middle, ) -> nn.Embedding: """ Tile the weights of an embedding layer to a new, larger embedding dimension. Args: pretrained_embedding (nn.Embedding): The original embedding layer new_embedding (nn.Embedding): The new embedding layer with larger embedding_dim tile_mode (Union[str, TileMode]): The Phi-style weight tiling mode to use Returns: nn.Embedding: The new embedding layer with tiled weights """ with torch.no_grad(): # Ensure vocabulary size remains the same if pretrained_embedding.num_embeddings != new_embedding.num_embeddings: raise ValueError("Vocabulary size (num_embeddings) must remain constant") # Ensure new embedding dimension is larger if new_embedding.embedding_dim <= pretrained_embedding.embedding_dim: raise ValueError("New embedding_dim must be larger than the old embedding_dim") # Tile the weights new_embedding.weight.data = nn.Parameter( tile_weight(pretrained_embedding.weight, new_embedding.weight, mode=mode), requires_grad=new_embedding.weight.requires_grad, ) # Handle padding_idx if it exists if pretrained_embedding.padding_idx is not None: if new_embedding.padding_idx is None: new_embedding.padding_idx = pretrained_embedding.padding_idx else: assert new_embedding.padding_idx == pretrained_embedding.padding_idx, "padding_idx must remain the same"