# Copyright 2022 MosaicML Examples authors # SPDX-License-Identifier: Apache-2.0 # Adapted from https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/bert_padding.py # Which was adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/padding.py """Helper functions for padding and unpadding batches. These functions are used extensively throughout the Mosaic BERT implementation in `bert_layers.py`. """ from typing import Tuple, cast import torch import torch.nn.functional as F from einops import rearrange, repeat class IndexFirstAxis(torch.autograd.Function): @staticmethod def forward(ctx, input: torch.Tensor, indices: torch.Tensor) -> torch.Tensor: """Get just the values of `input` which are at `indices`. Arguments: ctx: the autograd context object input: (b, ...) 2+ dimensional tensor indices: (num_idx) 1D tensor """ ctx.save_for_backward(indices) assert input.ndim >= 2 ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:] # type: ignore second_dim = other_shape.numel() # product of sizes of all but first dimension # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing. return torch.gather( rearrange(input, "b ... -> b (...)"), # (b, ...) -> (b, second_dim) 0, repeat(indices, "z -> z d", d=second_dim), # (indices,) -> (indices, second_dim) ).reshape(-1, *other_shape) # (num_idx, ...) @staticmethod def backward(ctx, grad_output: torch.Tensor) -> Tuple[torch.Tensor, None]: (indices,) = ctx.saved_tensors assert grad_output.ndim >= 2 other_shape = grad_output.shape[1:] grad_output = rearrange(grad_output, "b ... -> b (...)") grad_input = torch.zeros( [ctx.first_axis_dim, grad_output.shape[1]], device=grad_output.device, dtype=grad_output.dtype ) # TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing. # grad_input[indices] = grad_output grad_input.scatter_(0, repeat(indices, "z -> z d", d=grad_output.shape[1]), grad_output) return grad_input.reshape(ctx.first_axis_dim, *other_shape), None index_first_axis = IndexFirstAxis.apply class IndexPutFirstAxis(torch.autograd.Function): @staticmethod def forward(ctx, values: torch.Tensor, indices: torch.Tensor, first_axis_dim) -> torch.Tensor: ctx.save_for_backward(indices) assert indices.ndim == 1 assert values.ndim >= 2 output = torch.zeros(first_axis_dim, *values.shape[1:], device=values.device, dtype=values.dtype) output[indices] = values return output @staticmethod def backward(ctx, grad_output: torch.Tensor) -> Tuple[torch.Tensor, None, None]: (indices,) = ctx.saved_tensors grad_values = grad_output[indices] return grad_values, None, None index_put_first_axis = IndexPutFirstAxis.apply def unpad_input( hidden_states: torch.Tensor, attention_mask: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]: """Remove padding from input sequences. Arguments: hidden_states: (batch, seqlen, ...) attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid. Returns: hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask. indices: (total_nnz) cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states. max_seqlen_in_batch: int () """ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = int(seqlens_in_batch.max().item()) cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) # TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the # bool mask, then call nonzero to get the indices, then index with those. The indices is @dim # times larger than it needs to be, wasting memory. It's faster and more memory-efficient to # index with integer indices. Moreover, torch's index is a bit slower than it needs to be, # so we write custom forward and backward to make it a bit faster. hidden_states = cast(torch.Tensor, index_first_axis(rearrange(hidden_states, "b s ... -> (b s) ..."), indices)) return hidden_states, indices, cu_seqlens, max_seqlen_in_batch def unpad_input_only( hidden_states: torch.Tensor, attention_mask: torch.Tensor, ) -> torch.Tensor: """Like unpad_input, but only return the unpadded first tensor. Save a small amount of overhead. Arguments: hidden_states: (batch, seqlen, ...) attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid. Returns: hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask. """ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() rearranged = rearrange(hidden_states, "b s ... -> (b s) ...") return index_first_axis(rearranged, indices) # type: ignore def pad_input(hidden_states: torch.Tensor, indices: torch.Tensor, batch: int, seqlen: int) -> torch.Tensor: """Add padding to sequences. Arguments: hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask. indices: (total_nnz) batch: int batch_size seqlen: int max sequence length Returns: hidden_states: (batch, seqlen, ...) """ output = index_put_first_axis(hidden_states, indices, batch * seqlen) return rearrange(output, "(b s) ... -> b s ...", b=batch) # type: ignore