File size: 14,630 Bytes
2571cc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# Copyright 2022 MosaicML Examples authors
# SPDX-License-Identifier: Apache-2.0

import warnings

from transformers import BertConfig as TransformersBertConfig


class BertConfig(TransformersBertConfig):
    def __init__(
        self,
        alibi_starting_size: int = 512,
        normalization: str = "layernorm",
        attention_probs_dropout_prob: float = 0.0,
        head_pred_act: str = "gelu",
        deterministic_fa2: bool = False,
        allow_embedding_resizing: bool = False,
        **kwargs,
    ):
        """Configuration class for MosaicBert.

        Args:
            alibi_starting_size (int): Use `alibi_starting_size` to determine how large of an alibi tensor to
                create when initializing the model. You should be able to ignore this parameter in most cases.
                Defaults to 512.
            attention_probs_dropout_prob (float): By default, turn off attention dropout in MosaicBERT
                Note that the custom Triton Flash Attention with ALiBi implementation does not support droput.
                However, Flash Attention 2 supports ALiBi and dropout https://github.com/Dao-AILab/flash-attention
            embed_dropout_prob (float): Dropout probability for the embedding layer.
            attn_out_dropout_prob (float): Dropout probability for the attention output layer.
            mlp_dropout_prob (float): Dropout probability for the MLP layer.
            allow_embedding_resizing (bool): Embeddings will be automatically resized when they are smaller than the tokenizer vocab size.
        """
        super().__init__(attention_probs_dropout_prob=attention_probs_dropout_prob, **kwargs)
        self.alibi_starting_size = alibi_starting_size
        self.normalization = normalization
        self.head_pred_act = head_pred_act
        self.deterministic_fa2 = deterministic_fa2
        self.allow_embedding_resizing = allow_embedding_resizing


class FlexBertConfig(TransformersBertConfig):
    def __init__(
        self,
        attention_layer: str = "base",
        attention_probs_dropout_prob: float = 0.0,
        attn_out_bias: bool = False,
        attn_out_dropout_prob: float = 0.0,
        attn_qkv_bias: bool = False,
        bert_layer: str = "prenorm",
        decoder_bias: bool = True,
        embed_dropout_prob: float = 0.0,
        embed_norm: bool = True,
        final_norm: bool = False,
        embedding_layer: str = "absolute_pos",
        encoder_layer: str = "base",
        loss_function: str = "cross_entropy",
        loss_kwargs: dict = {},
        mlp_dropout_prob: float = 0.0,
        mlp_in_bias: bool = False,
        mlp_layer: str = "mlp",
        mlp_out_bias: bool = False,
        norm_kwargs: dict = {},
        normalization: str = "rmsnorm",
        padding: str = "unpadded",
        head_class_act: str = "silu",
        head_class_bias: bool = False,
        head_class_dropout: float = 0.0,
        head_class_norm: str = False,
        head_pred_act: str = "silu",
        head_pred_bias: bool = False,
        head_pred_dropout: float = 0.0,
        head_pred_norm: bool = True,
        pooling_type: str = "cls",
        rotary_emb_dim: int | None = None,
        rotary_emb_base: float = 10000.0,
        rotary_emb_scale_base=None,
        rotary_emb_interleaved: bool = False,
        use_fa2: bool = True,
        use_sdpa_attn_mask: bool = False,
        allow_embedding_resizing: bool = False,
        init_method: str = "default",
        init_std: float = 0.02,
        init_cutoff_factor: float = 2.0,
        init_small_embedding: bool = False,
        initial_attention_layer: str | None = None,
        initial_bert_layer: str | None = None,
        initial_mlp_layer: str | None = None,
        num_initial_layers: int = 1,
        skip_first_prenorm: bool = False,
        deterministic_fa2: bool = False,
        sliding_window: int = -1,
        global_attn_every_n_layers: int = -1,
        local_attn_rotary_emb_base: float = -1,
        local_attn_rotary_emb_dim: int | None = None,
        unpad_embeddings: bool = False,
        pad_logits: bool = False,
        compile_model: bool = False,
        masked_prediction: bool = False,
        **kwargs,
    ):
        """
        Args:
            attention_layer (str): Attention layer type.
            attention_probs_dropout_prob (float): Dropout probability for attention probabilities.
            attn_out_bias (bool): use bias in attention output projection.
            attn_out_dropout_prob (float): Dropout probability for attention output.
            attn_qkv_bias (bool): use bias for query, key, value linear layer(s).
            bert_layer (str): BERT layer type.
            decoder_bias (bool): use bias in decoder linear layer.
            embed_dropout_prob (float): Dropout probability for embeddings.
            embed_norm (bool): Normalize embedding output.
            final_norm (bool): Add normalization after the final encoder layer and before head.
            embedding_layer (str): Embedding layer type.
            encoder_layer (str): Encoder layer type.
            loss_function (str): Loss function to use.
            loss_kwargs (dict): Keyword arguments for loss function.
            mlp_dropout_prob (float): Dropout probability for MLP layers.
            mlp_in_bias (bool): Use bias in MLP input linear layer.
            mlp_layer (str): MLP layer type.
            mlp_out_bias (bool): Use bias in MLP output linear layer.
            norm_kwargs (dict): Keyword arguments for normalization layers.
            normalization (str): Normalization type.
            padding (str): Unpad inputs. Best with `use_fa2=True`.
            head_class_act (str): Activation function for classification head.
            head_class_bias (bool): Use bias in classification head linear layer(s).
            head_class_dropout (float): Dropout probability for classification head.
            head_class_norm (str): Normalization type for classification head.
            head_pred_act (str): Activation function for prediction head.
            head_pred_bias (bool): Use bias in prediction head linear layer(s).
            head_pred_dropout (float): Dropout probability for prediction head.
            head_pred_norm (bool): Normalize prediction head output.
            pooling_type (str): Pooling type.
            rotary_emb_dim (int | None): Rotary embedding dimension.
            rotary_emb_base (float): Rotary embedding base.
            rotary_emb_scale_base (float): Rotary embedding scale base.
            rotary_emb_interleaved (bool): Use interleaved rotary embeddings.
            use_fa2 (bool): Use FlashAttention2. Requires flash_attn package.
            use_sdpa_attn_mask (bool): Pass a mask to SDPA. This will prevent SDPA from using the PyTorch FA2 kernel.
            allow_embedding_resizing (bool): Embeddings will be automatically resized when they are smaller than the tokenizer vocab size.
            init_method (str): Model layers initialization method.
            init_std (float): Standard deviation for initialization. Used for normal and full_megatron init.
            init_cutoff_factor (float): Cutoff factor for initialization. Used for normal and full_megatron init.
            init_small_embedding (bool): Initialize embeddings with RWKV small init.
            initial_attention_layer (str | None): Replace first `num_initial_layers` attention_layer instance with this layer.
            initial_bert_layer (str | None): Replace first `num_initial_layers` bert_layer instance with this layer.
            initial_mlp_layer (str | None): Replace first `num_initial_layers` mlp_layer instance with this layer.
            num_initial_layers (int): Number of initial layers to set via `initial_attention_layer`, `initial_bert_layer`, and `initial_mlp_layer`.
            skip_first_prenorm (bool): Skip pre-normalization for the first bert layer. Requires `embed_norm=True`.
            deterministic_fa2 (bool): Use Flash Attention 2 deterministic mode. This is slower then the default non-deterministic mode.
            sliding_window (int): Use sliding window attention with window size `n`. -1 to disable. Window size split between the left and right context. Only supports FA2.
            global_attn_every_n_layers (int): Use global attention every `n` layers and sliding window for the rest. -1 to disable.
            local_attn_rotary_emb_base (float): Rotary embedding base for local attention. -1 to disable and use `rotary_emb_base` for all layers.
            local_attn_rotary_emb_dim (int | None): Rotary embedding dimension for local attention. None to disable and use `rotary_emb_dim` for all layers.
            unpad_embeddings (bool): Unpad inputs before the embedding layer.
            pad_logits (bool): Pad logits after the calculating the loss.
            compile_model (bool): Compile the subset of the model which can be compiled.
            masked_prediction (bool): Use only pass the masked tokens throught the final MLM layers
            **kwargs: Additional keyword arguments.
        """
        super().__init__(attention_probs_dropout_prob=attention_probs_dropout_prob, **kwargs)
        self.attention_layer = attention_layer
        self.attn_out_bias = attn_out_bias
        self.attn_out_dropout_prob = attn_out_dropout_prob
        self.attn_qkv_bias = attn_qkv_bias
        self.bert_layer = bert_layer
        self.decoder_bias = decoder_bias
        self.embed_dropout_prob = embed_dropout_prob
        self.embed_norm = embed_norm
        self.final_norm = final_norm
        self.embedding_layer = embedding_layer
        self.encoder_layer = encoder_layer
        self.loss_function = loss_function
        self.loss_kwargs = loss_kwargs
        self.mlp_dropout_prob = mlp_dropout_prob
        self.mlp_in_bias = mlp_in_bias
        self.mlp_layer = mlp_layer
        self.mlp_out_bias = mlp_out_bias
        self.norm_kwargs = norm_kwargs
        self.normalization = normalization
        self.padding = padding
        self.head_class_act = head_class_act
        self.head_class_bias = head_class_bias
        self.head_class_dropout = head_class_dropout
        self.head_class_norm = head_class_norm
        self.head_pred_act = head_pred_act
        self.head_pred_bias = head_pred_bias
        self.head_pred_dropout = head_pred_dropout
        self.head_pred_norm = head_pred_norm
        self.pooling_type = pooling_type
        self.rotary_emb_dim = rotary_emb_dim
        self.rotary_emb_base = rotary_emb_base
        self.rotary_emb_scale_base = rotary_emb_scale_base
        self.rotary_emb_interleaved = rotary_emb_interleaved
        self.use_fa2 = use_fa2
        self.use_sdpa_attn_mask = use_sdpa_attn_mask
        self.allow_embedding_resizing = allow_embedding_resizing
        self.init_method = init_method
        self.init_std = init_std
        self.init_cutoff_factor = init_cutoff_factor
        self.init_small_embedding = init_small_embedding
        self.initial_attention_layer = initial_attention_layer
        self.initial_bert_layer = initial_bert_layer
        self.initial_mlp_layer = initial_mlp_layer
        self.num_initial_layers = num_initial_layers
        self.skip_first_prenorm = skip_first_prenorm
        self.deterministic_fa2 = deterministic_fa2
        self.sliding_window = sliding_window
        self.global_attn_every_n_layers = global_attn_every_n_layers
        self.local_attn_rotary_emb_base = local_attn_rotary_emb_base
        self.local_attn_rotary_emb_dim = local_attn_rotary_emb_dim
        self.unpad_embeddings = unpad_embeddings
        self.pad_logits = pad_logits
        self.compile_model = compile_model
        self.masked_prediction = masked_prediction

        if loss_kwargs.get("return_z_loss", False):
            if loss_function != "fa_cross_entropy":
                raise ValueError("loss_function must be 'fa_cross_entropy' when return_z_loss is True")
            if loss_kwargs.get("lse_square_scale", 0) <= 0:
                raise ValueError(
                    "lse_square_scale must be passed to `loss_kwargs` and must be greater than 0 for z_loss"
                )
        if loss_kwargs.get("inplace_backward", False):
            self.loss_kwargs["inplace_backward"] = False
            warnings.warn("`inplace_backward=True` will cause incorrect metrics. Automatically setting to False.")

        if global_attn_every_n_layers > 0 and (self.num_hidden_layers - 1) % global_attn_every_n_layers != 0:
            raise ValueError(
                f"{global_attn_every_n_layers=} must be a divisor of one less than {self.num_hidden_layers=}"
            )

        if self.sliding_window != -1:
            if not self.use_fa2:
                raise ValueError("Sliding window attention is only supported with FlashAttention2")
            if self.sliding_window % 2 != 0 and self.sliding_window % 64 != 0:
                raise ValueError(
                    f"Sliding window must be an even number and divisible by 64: {self.sliding_window=} {self.sliding_window % 64} {self.sliding_window % 2}"
                )
        else:
            if self.global_attn_every_n_layers != -1:
                raise ValueError("global_attn_every_n_layers must be -1 when sliding_window is disabled")
            if self.local_attn_rotary_emb_base != -1:
                raise ValueError("local_attn_rotary_emb_base must be -1 when sliding_window is disabled")
            if self.local_attn_rotary_emb_dim is not None:
                raise ValueError("local_attn_rotary_emb_dim must be None when sliding_window is disabled")

        if self.unpad_embeddings and self.padding != "unpadded":
            warnings.warn(
                "`unpad_embeddings=True` requires `padding='unpadded'`. Automatically setting `padding='unpadded'`."
            )
            self.padding = "unpadded"
        if self.pad_logits and not self.unpad_embeddings:
            raise ValueError("`pad_logits=True` requires `unpad_embeddings=True`")
        if self.unpad_embeddings and self.embedding_layer == "absolute_pos":
            raise ValueError(f"{self.unpad_embeddings=} is incompatible with {self.embedding_layer=}")


PADDING = ["unpadded", "padded"]


def maybe_add_padding(config: FlexBertConfig, config_option: str) -> str:
    if config.padding not in PADDING:
        raise ValueError(f"Invalid padding type: {config.padding}, must be one of {PADDING}")

    if not any(config_option.startswith(pad + "_") for pad in PADDING):
        config_option = f"{config.padding}_{config_option}"

    return config_option