lichi.jesse commited on
Commit
173fe9d
1 Parent(s): 9d666a1

update model

Browse files
checkpoint-2000/config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "THUDM/chatglm-6b",
3
+ "architectures": [
4
+ "ChatGLMForConditionalGeneration"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_chatglm.ChatGLMConfig",
8
+ "AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",
9
+ "AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration"
10
+ },
11
+ "bos_token_id": 130004,
12
+ "eos_token_id": 130005,
13
+ "gmask_token_id": 130001,
14
+ "hidden_size": 4096,
15
+ "inner_hidden_size": 16384,
16
+ "layernorm_epsilon": 1e-05,
17
+ "mask_token_id": 130000,
18
+ "max_sequence_length": 2048,
19
+ "model_type": "chatglm",
20
+ "num_attention_heads": 32,
21
+ "num_layers": 28,
22
+ "pad_token_id": 3,
23
+ "position_encoding_2d": true,
24
+ "pre_seq_len": null,
25
+ "prefix_projection": false,
26
+ "quantization_bit": 0,
27
+ "torch_dtype": "float16",
28
+ "transformers_version": "4.27.1",
29
+ "use_cache": true,
30
+ "vocab_size": 130528
31
+ }
checkpoint-2000/configuration_chatglm.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ ChatGLM model configuration """
2
+
3
+ from transformers.configuration_utils import PretrainedConfig
4
+ from transformers.utils import logging
5
+
6
+ logger = logging.get_logger(__name__)
7
+
8
+
9
+ class ChatGLMConfig(PretrainedConfig):
10
+ r"""
11
+ This is the configuration class to store the configuration of a [`~ChatGLMModel`].
12
+ It is used to instantiate an ChatGLM model according to the specified arguments, defining the model
13
+ architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
14
+ the ChatGLM-6B [THUDM/ChatGLM-6B](https://huggingface.co/THUDM/chatglm-6b) architecture.
15
+
16
+ Configuration objects inherit from [`PretrainedConfig`] and can be used
17
+ to control the model outputs. Read the documentation from [`PretrainedConfig`]
18
+ for more information.
19
+
20
+
21
+ Args:
22
+ vocab_size (`int`, *optional*, defaults to 150528):
23
+ Vocabulary size of the ChatGLM-6B model. Defines the number of different tokens that can be represented by the
24
+ `inputs_ids` passed when calling [`~ChatGLMModel`] or
25
+ [`~TFChatGLMModel`].
26
+ hidden_size (`int`, *optional*, defaults to 4096):
27
+ Dimension of the encoder layers and the pooler layer.
28
+ num_hidden_layers (`int`, *optional*, defaults to 28):
29
+ Number of hidden layers in the Transformer encoder.
30
+ num_attention_heads (`int`, *optional*, defaults to 32):
31
+ Number of attention heads for each attention layer in the Transformer encoder.
32
+ inner_hidden_size (`int`, *optional*, defaults to 16384):
33
+ Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
34
+ max_sequence_length (`int`, *optional*, defaults to 512):
35
+ The maximum sequence length that this model might ever be used with.
36
+ Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
37
+ layernorm_epsilon (`float`, *optional*, defaults to 1e-5):
38
+ The epsilon used by the layer normalization layers.
39
+ use_cache (`bool`, *optional*, defaults to `True`):
40
+ Whether the model should return the last key/values attentions (not used by all models).
41
+ Example:
42
+
43
+ ```python
44
+ >>> from configuration_chatglm import ChatGLMConfig
45
+ >>> from modeling_chatglm import ChatGLMModel
46
+
47
+ >>> # Initializing a ChatGLM-6B THUDM/ChatGLM-6B style configuration
48
+ >>> configuration = ChatGLMConfig()
49
+
50
+ >>> # Initializing a model from the THUDM/ChatGLM-6B style configuration
51
+ >>> model = ChatGLMModel(configuration)
52
+
53
+ >>> # Accessing the model configuration
54
+ >>> configuration = model.config
55
+ ```
56
+ """
57
+ model_type = "chatglm"
58
+
59
+ def __init__(
60
+ self,
61
+ vocab_size=150528,
62
+ hidden_size=4096,
63
+ num_layers=28,
64
+ num_attention_heads=32,
65
+ layernorm_epsilon=1e-5,
66
+ use_cache=False,
67
+ bos_token_id=150004,
68
+ eos_token_id=150005,
69
+ mask_token_id=150000,
70
+ gmask_token_id=150001,
71
+ pad_token_id=0,
72
+ max_sequence_length=2048,
73
+ inner_hidden_size=16384,
74
+ position_encoding_2d=True,
75
+ quantization_bit=0,
76
+ pre_seq_len=None,
77
+ prefix_projection=False,
78
+ **kwargs
79
+ ):
80
+ self.num_layers = num_layers
81
+ self.vocab_size = vocab_size
82
+ self.hidden_size = hidden_size
83
+ self.num_attention_heads = num_attention_heads
84
+ self.max_sequence_length = max_sequence_length
85
+ self.layernorm_epsilon = layernorm_epsilon
86
+ self.inner_hidden_size = inner_hidden_size
87
+ self.use_cache = use_cache
88
+ self.bos_token_id = bos_token_id
89
+ self.eos_token_id = eos_token_id
90
+ self.pad_token_id = pad_token_id
91
+ self.mask_token_id = mask_token_id
92
+ self.gmask_token_id = gmask_token_id
93
+ self.position_encoding_2d = position_encoding_2d
94
+ self.quantization_bit = quantization_bit
95
+ self.pre_seq_len = pre_seq_len
96
+ self.prefix_projection = prefix_projection
97
+
98
+ super().__init__(
99
+ pad_token_id=pad_token_id,
100
+ bos_token_id=bos_token_id,
101
+ eos_token_id=eos_token_id,
102
+ **kwargs
103
+ )
checkpoint-2000/generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 130004,
4
+ "eos_token_id": 130005,
5
+ "pad_token_id": 3,
6
+ "transformers_version": "4.27.1"
7
+ }
checkpoint-2000/ice_text.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e974d9a69c242ce014c88c2b26089270f6198f3c0b700a887666cd3e816f17e
3
+ size 2706249
checkpoint-2000/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step2000
checkpoint-2000/modeling_chatglm.py ADDED
@@ -0,0 +1,1435 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ PyTorch ChatGLM model. """
2
+
3
+ import math
4
+ import copy
5
+ import os
6
+ import warnings
7
+ import re
8
+ import sys
9
+
10
+ import torch
11
+ import torch.utils.checkpoint
12
+ import torch.nn.functional as F
13
+ from torch import nn
14
+ from torch.nn import CrossEntropyLoss, LayerNorm
15
+ from torch.nn.utils import skip_init
16
+ from typing import Optional, Tuple, Union, List, Callable, Dict, Any
17
+
18
+ from transformers.utils import (
19
+ add_code_sample_docstrings,
20
+ add_start_docstrings,
21
+ add_start_docstrings_to_model_forward,
22
+ )
23
+ from transformers.modeling_outputs import (
24
+ BaseModelOutputWithPast,
25
+ CausalLMOutputWithPast,
26
+ BaseModelOutputWithPastAndCrossAttentions,
27
+ )
28
+ from transformers.modeling_utils import PreTrainedModel
29
+ from transformers.utils import logging
30
+ from transformers.generation.logits_process import LogitsProcessor
31
+ from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput
32
+
33
+ from .configuration_chatglm import ChatGLMConfig
34
+
35
+ # flags required to enable jit fusion kernels
36
+
37
+ if sys.platform != 'darwin':
38
+ torch._C._jit_set_profiling_mode(False)
39
+ torch._C._jit_set_profiling_executor(False)
40
+ torch._C._jit_override_can_fuse_on_cpu(True)
41
+ torch._C._jit_override_can_fuse_on_gpu(True)
42
+
43
+ logger = logging.get_logger(__name__)
44
+
45
+ _CHECKPOINT_FOR_DOC = "THUDM/ChatGLM-6B"
46
+ _CONFIG_FOR_DOC = "ChatGLM6BConfig"
47
+
48
+ CHATGLM_6B_PRETRAINED_MODEL_ARCHIVE_LIST = [
49
+ "THUDM/chatglm-6b",
50
+ # See all ChatGLM-6B models at https://huggingface.co/models?filter=chatglm
51
+ ]
52
+
53
+
54
+ class InvalidScoreLogitsProcessor(LogitsProcessor):
55
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
56
+ if torch.isnan(scores).any() or torch.isinf(scores).any():
57
+ scores.zero_()
58
+ scores[..., 5] = 5e4
59
+ return scores
60
+
61
+
62
+ def load_tf_weights_in_chatglm_6b(model, config, tf_checkpoint_path):
63
+ """Load tf checkpoints in a pytorch model."""
64
+ try:
65
+ import re
66
+
67
+ import numpy as np
68
+ import tensorflow as tf
69
+ except ImportError:
70
+ logger.error(
71
+ "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
72
+ "https://www.tensorflow.org/install/ for installation instructions."
73
+ )
74
+ raise
75
+ tf_path = os.path.abspath(tf_checkpoint_path)
76
+ logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
77
+ # Load weights from TF model
78
+ init_vars = tf.train.list_variables(tf_path)
79
+ names = []
80
+ arrays = []
81
+ for name, shape in init_vars:
82
+ logger.info(f"Loading TF weight {name} with shape {shape}")
83
+ array = tf.train.load_variable(tf_path, name)
84
+ names.append(name)
85
+ arrays.append(array)
86
+
87
+ for name, array in zip(names, arrays):
88
+ name = name.split("/")
89
+ # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
90
+ # which are not required for using pretrained model
91
+ if any(
92
+ n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
93
+ for n in name
94
+ ):
95
+ logger.info(f"Skipping {'/'.join(name)}")
96
+ continue
97
+ pointer = model
98
+ for m_name in name:
99
+ if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
100
+ scope_names = re.split(r"_(\d+)", m_name)
101
+ else:
102
+ scope_names = [m_name]
103
+ if scope_names[0] == "kernel" or scope_names[0] == "gamma":
104
+ pointer = getattr(pointer, "weight")
105
+ elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
106
+ pointer = getattr(pointer, "bias")
107
+ elif scope_names[0] == "output_weights":
108
+ pointer = getattr(pointer, "weight")
109
+ elif scope_names[0] == "squad":
110
+ pointer = getattr(pointer, "classifier")
111
+ else:
112
+ try:
113
+ pointer = getattr(pointer, scope_names[0])
114
+ except AttributeError:
115
+ logger.info(f"Skipping {'/'.join(name)}")
116
+ continue
117
+ if len(scope_names) >= 2:
118
+ num = int(scope_names[1])
119
+ pointer = pointer[num]
120
+ if m_name[-11:] == "_embeddings":
121
+ pointer = getattr(pointer, "weight")
122
+ elif m_name == "kernel":
123
+ array = np.transpose(array)
124
+ try:
125
+ assert (
126
+ pointer.shape == array.shape
127
+ ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
128
+ except AssertionError as e:
129
+ e.args += (pointer.shape, array.shape)
130
+ raise
131
+ logger.info(f"Initialize PyTorch weight {name}")
132
+ pointer.data = torch.from_numpy(array)
133
+ return model
134
+
135
+
136
+ class PrefixEncoder(torch.nn.Module):
137
+ """
138
+ The torch.nn model to encode the prefix
139
+ Input shape: (batch-size, prefix-length)
140
+ Output shape: (batch-size, prefix-length, 2*layers*hidden)
141
+ """
142
+
143
+ def __init__(self, config):
144
+ super().__init__()
145
+ self.prefix_projection = config.prefix_projection
146
+ if self.prefix_projection:
147
+ # Use a two-layer MLP to encode the prefix
148
+ self.embedding = torch.nn.Embedding(config.pre_seq_len, config.hidden_size)
149
+ self.trans = torch.nn.Sequential(
150
+ torch.nn.Linear(config.hidden_size, config.hidden_size),
151
+ torch.nn.Tanh(),
152
+ torch.nn.Linear(config.hidden_size, config.num_layers * config.hidden_size * 2)
153
+ )
154
+ else:
155
+ self.embedding = torch.nn.Embedding(config.pre_seq_len, config.num_layers * config.hidden_size * 2)
156
+
157
+ def forward(self, prefix: torch.Tensor):
158
+ if self.prefix_projection:
159
+ prefix_tokens = self.embedding(prefix)
160
+ past_key_values = self.trans(prefix_tokens)
161
+ else:
162
+ past_key_values = self.embedding(prefix)
163
+ return past_key_values
164
+
165
+
166
+ @torch.jit.script
167
+ def gelu_impl(x):
168
+ """OpenAI's gelu implementation."""
169
+ return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * x *
170
+ (1.0 + 0.044715 * x * x)))
171
+
172
+
173
+ def gelu(x):
174
+ return gelu_impl(x)
175
+
176
+
177
+ class RotaryEmbedding(torch.nn.Module):
178
+ def __init__(self, dim, base=10000, precision=torch.half, learnable=False):
179
+ super().__init__()
180
+ inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
181
+ inv_freq = inv_freq.half()
182
+ self.learnable = learnable
183
+ if learnable:
184
+ self.inv_freq = torch.nn.Parameter(inv_freq)
185
+ self.max_seq_len_cached = None
186
+ else:
187
+ self.register_buffer('inv_freq', inv_freq)
188
+ self.max_seq_len_cached = None
189
+ self.cos_cached = None
190
+ self.sin_cached = None
191
+ self.precision = precision
192
+
193
+ def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys,
194
+ error_msgs):
195
+ pass
196
+
197
+ def forward(self, x, seq_dim=1, seq_len=None):
198
+ if seq_len is None:
199
+ seq_len = x.shape[seq_dim]
200
+ if self.max_seq_len_cached is None or (seq_len > self.max_seq_len_cached):
201
+ self.max_seq_len_cached = None if self.learnable else seq_len
202
+ t = torch.arange(seq_len, device=x.device, dtype=self.inv_freq.dtype)
203
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
204
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
205
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
206
+ if self.precision == torch.bfloat16:
207
+ emb = emb.float()
208
+
209
+ # [sx, 1 (b * np), hn]
210
+ cos_cached = emb.cos()[:, None, :]
211
+ sin_cached = emb.sin()[:, None, :]
212
+ if self.precision == torch.bfloat16:
213
+ cos_cached = cos_cached.bfloat16()
214
+ sin_cached = sin_cached.bfloat16()
215
+ if self.learnable:
216
+ return cos_cached, sin_cached
217
+ self.cos_cached, self.sin_cached = cos_cached, sin_cached
218
+ return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...]
219
+
220
+ def _apply(self, fn):
221
+ if self.cos_cached is not None:
222
+ self.cos_cached = fn(self.cos_cached)
223
+ if self.sin_cached is not None:
224
+ self.sin_cached = fn(self.sin_cached)
225
+ return super()._apply(fn)
226
+
227
+
228
+ def rotate_half(x):
229
+ x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
230
+ return torch.cat((-x2, x1), dim=x1.ndim - 1) # dim=-1 triggers a bug in earlier torch versions
231
+
232
+
233
+ @torch.jit.script
234
+ def apply_rotary_pos_emb_index(q, k, cos, sin, position_id):
235
+ # position_id: [sq, b], q, k: [sq, b, np, hn], cos: [sq, 1, hn] -> [sq, b, 1, hn]
236
+ cos, sin = F.embedding(position_id, cos.squeeze(1)).unsqueeze(2), \
237
+ F.embedding(position_id, sin.squeeze(1)).unsqueeze(2)
238
+ q, k = (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
239
+ return q, k
240
+
241
+
242
+ def attention_fn(
243
+ self,
244
+ query_layer,
245
+ key_layer,
246
+ value_layer,
247
+ attention_mask,
248
+ hidden_size_per_partition,
249
+ layer_id,
250
+ layer_past=None,
251
+ scaling_attention_score=True,
252
+ use_cache=False,
253
+ ):
254
+ if layer_past is not None:
255
+ past_key, past_value = layer_past[0], layer_past[1]
256
+ key_layer = torch.cat((past_key, key_layer), dim=0)
257
+ value_layer = torch.cat((past_value, value_layer), dim=0)
258
+
259
+ # seqlen, batch, num_attention_heads, hidden_size_per_attention_head
260
+ seq_len, b, nh, hidden_size = key_layer.shape
261
+
262
+ if use_cache:
263
+ present = (key_layer, value_layer)
264
+ else:
265
+ present = None
266
+
267
+ query_key_layer_scaling_coeff = float(layer_id + 1)
268
+ if scaling_attention_score:
269
+ query_layer = query_layer / (math.sqrt(hidden_size) * query_key_layer_scaling_coeff)
270
+
271
+ # ===================================
272
+ # Raw attention scores. [b, np, s, s]
273
+ # ===================================
274
+
275
+ # [b, np, sq, sk]
276
+ output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0))
277
+
278
+ # [sq, b, np, hn] -> [sq, b * np, hn]
279
+ query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
280
+ # [sk, b, np, hn] -> [sk, b * np, hn]
281
+ key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)
282
+
283
+ matmul_result = torch.zeros(
284
+ 1, 1, 1,
285
+ dtype=query_layer.dtype,
286
+ device=query_layer.device,
287
+ )
288
+
289
+ matmul_result = torch.baddbmm(
290
+ matmul_result,
291
+ query_layer.transpose(0, 1), # [b * np, sq, hn]
292
+ key_layer.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk]
293
+ beta=0.0,
294
+ alpha=1.0,
295
+ )
296
+
297
+ # change view to [b, np, sq, sk]
298
+ attention_scores = matmul_result.view(*output_size)
299
+
300
+ if self.scale_mask_softmax:
301
+ self.scale_mask_softmax.scale = query_key_layer_scaling_coeff
302
+ attention_probs = self.scale_mask_softmax(attention_scores, attention_mask.contiguous())
303
+ else:
304
+ if not (attention_mask == 0).all():
305
+ # if auto-regressive, skip
306
+ attention_scores.masked_fill_(attention_mask, -10000.0)
307
+ dtype = attention_scores.dtype
308
+ attention_scores = attention_scores.float()
309
+ attention_scores = attention_scores * query_key_layer_scaling_coeff
310
+
311
+ attention_probs = F.softmax(attention_scores, dim=-1)
312
+
313
+ attention_probs = attention_probs.type(dtype)
314
+
315
+ # =========================
316
+ # Context layer. [sq, b, hp]
317
+ # =========================
318
+
319
+ # value_layer -> context layer.
320
+ # [sk, b, np, hn] --> [b, np, sq, hn]
321
+
322
+ # context layer shape: [b, np, sq, hn]
323
+ output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))
324
+
325
+ # change view [sk, b * np, hn]
326
+ value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1)
327
+
328
+ # change view [b * np, sq, sk]
329
+ attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
330
+
331
+ # matmul: [b * np, sq, hn]
332
+ context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
333
+
334
+ # change view [b, np, sq, hn]
335
+ context_layer = context_layer.view(*output_size)
336
+
337
+ # [b, np, sq, hn] --> [sq, b, np, hn]
338
+ context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
339
+
340
+ # [sq, b, np, hn] --> [sq, b, hp]
341
+ new_context_layer_shape = context_layer.size()[:-2] + (hidden_size_per_partition,)
342
+ context_layer = context_layer.view(*new_context_layer_shape)
343
+
344
+ outputs = (context_layer, present, attention_probs)
345
+
346
+ return outputs
347
+
348
+
349
+ def default_init(cls, *args, **kwargs):
350
+ return cls(*args, **kwargs)
351
+
352
+
353
+ class SelfAttention(torch.nn.Module):
354
+ def __init__(self, hidden_size, num_attention_heads,
355
+ layer_id, hidden_size_per_attention_head=None, bias=True,
356
+ params_dtype=torch.float, position_encoding_2d=True, empty_init=True):
357
+ if empty_init:
358
+ init_method = skip_init
359
+ else:
360
+ init_method = default_init
361
+ super(SelfAttention, self).__init__()
362
+
363
+ self.layer_id = layer_id
364
+ self.hidden_size = hidden_size
365
+ self.hidden_size_per_partition = hidden_size
366
+ self.num_attention_heads = num_attention_heads
367
+ self.num_attention_heads_per_partition = num_attention_heads
368
+ self.position_encoding_2d = position_encoding_2d
369
+ self.rotary_emb = RotaryEmbedding(
370
+ self.hidden_size // (self.num_attention_heads * 2)
371
+ if position_encoding_2d
372
+ else self.hidden_size // self.num_attention_heads,
373
+ base=10000,
374
+ precision=torch.half,
375
+ learnable=False,
376
+ )
377
+
378
+ self.scale_mask_softmax = None
379
+
380
+ if hidden_size_per_attention_head is None:
381
+ self.hidden_size_per_attention_head = hidden_size // num_attention_heads
382
+ else:
383
+ self.hidden_size_per_attention_head = hidden_size_per_attention_head
384
+
385
+ self.inner_hidden_size = num_attention_heads * self.hidden_size_per_attention_head
386
+
387
+ # Strided linear layer.
388
+ self.query_key_value = init_method(
389
+ torch.nn.Linear,
390
+ hidden_size,
391
+ 3 * self.inner_hidden_size,
392
+ bias=bias,
393
+ dtype=params_dtype,
394
+ )
395
+
396
+ self.dense = init_method(
397
+ torch.nn.Linear,
398
+ self.inner_hidden_size,
399
+ hidden_size,
400
+ bias=bias,
401
+ dtype=params_dtype,
402
+ )
403
+
404
+ @staticmethod
405
+ def attention_mask_func(attention_scores, attention_mask):
406
+ attention_scores.masked_fill_(attention_mask, -10000.0)
407
+ return attention_scores
408
+
409
+ def split_tensor_along_last_dim(self, tensor, num_partitions,
410
+ contiguous_split_chunks=False):
411
+ """Split a tensor along its last dimension.
412
+ Arguments:
413
+ tensor: input tensor.
414
+ num_partitions: number of partitions to split the tensor
415
+ contiguous_split_chunks: If True, make each chunk contiguous
416
+ in memory.
417
+ """
418
+ # Get the size and dimension.
419
+ last_dim = tensor.dim() - 1
420
+ last_dim_size = tensor.size()[last_dim] // num_partitions
421
+ # Split.
422
+ tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
423
+ # Note: torch.split does not create contiguous tensors by default.
424
+ if contiguous_split_chunks:
425
+ return tuple(chunk.contiguous() for chunk in tensor_list)
426
+
427
+ return tensor_list
428
+
429
+ def forward(
430
+ self,
431
+ hidden_states: torch.Tensor,
432
+ position_ids,
433
+ attention_mask: torch.Tensor,
434
+ layer_id,
435
+ layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
436
+ use_cache: bool = False,
437
+ output_attentions: bool = False,
438
+ ):
439
+ """
440
+ hidden_states: [seq_len, batch, hidden_size]
441
+ attention_mask: [(1, 1), seq_len, seq_len]
442
+ """
443
+
444
+ # [seq_len, batch, 3 * hidden_size]
445
+ mixed_raw_layer = self.query_key_value(hidden_states)
446
+
447
+ # [seq_len, batch, 3 * hidden_size] --> [seq_len, batch, num_attention_heads, 3 * hidden_size_per_attention_head]
448
+ new_tensor_shape = mixed_raw_layer.size()[:-1] + (
449
+ self.num_attention_heads_per_partition,
450
+ 3 * self.hidden_size_per_attention_head,
451
+ )
452
+ mixed_raw_layer = mixed_raw_layer.view(*new_tensor_shape)
453
+
454
+ # [seq_len, batch, num_attention_heads, hidden_size_per_attention_head]
455
+ (query_layer, key_layer, value_layer) = self.split_tensor_along_last_dim(mixed_raw_layer, 3)
456
+
457
+ if self.position_encoding_2d:
458
+ q1, q2 = query_layer.chunk(2, dim=(query_layer.ndim - 1))
459
+ k1, k2 = key_layer.chunk(2, dim=(key_layer.ndim - 1))
460
+ cos, sin = self.rotary_emb(q1, seq_len=position_ids.max() + 1)
461
+ position_ids, block_position_ids = position_ids[:, 0, :].transpose(0, 1).contiguous(), \
462
+ position_ids[:, 1, :].transpose(0, 1).contiguous()
463
+ q1, k1 = apply_rotary_pos_emb_index(q1, k1, cos, sin, position_ids)
464
+ q2, k2 = apply_rotary_pos_emb_index(q2, k2, cos, sin, block_position_ids)
465
+ query_layer = torch.concat([q1, q2], dim=(q1.ndim - 1))
466
+ key_layer = torch.concat([k1, k2], dim=(k1.ndim - 1))
467
+ else:
468
+ position_ids = position_ids.transpose(0, 1)
469
+ cos, sin = self.rotary_emb(value_layer, seq_len=position_ids.max() + 1)
470
+ # [seq_len, batch, num_attention_heads, hidden_size_per_attention_head]
471
+ query_layer, key_layer = apply_rotary_pos_emb_index(query_layer, key_layer, cos, sin, position_ids)
472
+
473
+ # [seq_len, batch, hidden_size]
474
+ context_layer, present, attention_probs = attention_fn(
475
+ self=self,
476
+ query_layer=query_layer,
477
+ key_layer=key_layer,
478
+ value_layer=value_layer,
479
+ attention_mask=attention_mask,
480
+ hidden_size_per_partition=self.hidden_size_per_partition,
481
+ layer_id=layer_id,
482
+ layer_past=layer_past,
483
+ use_cache=use_cache
484
+ )
485
+
486
+ output = self.dense(context_layer)
487
+
488
+ outputs = (output, present)
489
+
490
+ if output_attentions:
491
+ outputs += (attention_probs,)
492
+
493
+ return outputs # output, present, attention_probs
494
+
495
+
496
+ class GEGLU(torch.nn.Module):
497
+ def __init__(self):
498
+ super().__init__()
499
+ self.activation_fn = F.gelu
500
+
501
+ def forward(self, x):
502
+ # dim=-1 breaks in jit for pt<1.10
503
+ x1, x2 = x.chunk(2, dim=(x.ndim - 1))
504
+ return x1 * self.activation_fn(x2)
505
+
506
+
507
+ class GLU(torch.nn.Module):
508
+ def __init__(self, hidden_size, inner_hidden_size=None,
509
+ layer_id=None, bias=True, activation_func=gelu, params_dtype=torch.float, empty_init=True):
510
+ super(GLU, self).__init__()
511
+ if empty_init:
512
+ init_method = skip_init
513
+ else:
514
+ init_method = default_init
515
+ self.layer_id = layer_id
516
+ self.activation_func = activation_func
517
+
518
+ # Project to 4h.
519
+ self.hidden_size = hidden_size
520
+ if inner_hidden_size is None:
521
+ inner_hidden_size = 4 * hidden_size
522
+ self.inner_hidden_size = inner_hidden_size
523
+ self.dense_h_to_4h = init_method(
524
+ torch.nn.Linear,
525
+ self.hidden_size,
526
+ self.inner_hidden_size,
527
+ bias=bias,
528
+ dtype=params_dtype,
529
+ )
530
+ # Project back to h.
531
+ self.dense_4h_to_h = init_method(
532
+ torch.nn.Linear,
533
+ self.inner_hidden_size,
534
+ self.hidden_size,
535
+ bias=bias,
536
+ dtype=params_dtype,
537
+ )
538
+
539
+ def forward(self, hidden_states):
540
+ """
541
+ hidden_states: [seq_len, batch, hidden_size]
542
+ """
543
+
544
+ # [seq_len, batch, inner_hidden_size]
545
+ intermediate_parallel = self.dense_h_to_4h(hidden_states)
546
+
547
+ intermediate_parallel = self.activation_func(intermediate_parallel)
548
+
549
+ output = self.dense_4h_to_h(intermediate_parallel)
550
+
551
+ return output
552
+
553
+
554
+ class GLMBlock(torch.nn.Module):
555
+ def __init__(
556
+ self,
557
+ hidden_size,
558
+ num_attention_heads,
559
+ layernorm_epsilon,
560
+ layer_id,
561
+ inner_hidden_size=None,
562
+ hidden_size_per_attention_head=None,
563
+ layernorm=LayerNorm,
564
+ use_bias=True,
565
+ params_dtype=torch.float,
566
+ num_layers=28,
567
+ position_encoding_2d=True,
568
+ empty_init=True
569
+ ):
570
+ super(GLMBlock, self).__init__()
571
+ # Set output layer initialization if not provided.
572
+
573
+ self.layer_id = layer_id
574
+
575
+ # Layernorm on the input data.
576
+ self.input_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)
577
+
578
+ self.position_encoding_2d = position_encoding_2d
579
+
580
+ # Self attention.
581
+ self.attention = SelfAttention(
582
+ hidden_size,
583
+ num_attention_heads,
584
+ layer_id,
585
+ hidden_size_per_attention_head=hidden_size_per_attention_head,
586
+ bias=use_bias,
587
+ params_dtype=params_dtype,
588
+ position_encoding_2d=self.position_encoding_2d,
589
+ empty_init=empty_init
590
+ )
591
+
592
+ # Layernorm on the input data.
593
+ self.post_attention_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)
594
+
595
+ self.num_layers = num_layers
596
+
597
+ # GLU
598
+ self.mlp = GLU(
599
+ hidden_size,
600
+ inner_hidden_size=inner_hidden_size,
601
+ bias=use_bias,
602
+ layer_id=layer_id,
603
+ params_dtype=params_dtype,
604
+ empty_init=empty_init
605
+ )
606
+
607
+ def forward(
608
+ self,
609
+ hidden_states: torch.Tensor,
610
+ position_ids,
611
+ attention_mask: torch.Tensor,
612
+ layer_id,
613
+ layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
614
+ use_cache: bool = False,
615
+ output_attentions: bool = False,
616
+ ):
617
+ """
618
+ hidden_states: [seq_len, batch, hidden_size]
619
+ attention_mask: [(1, 1), seq_len, seq_len]
620
+ """
621
+
622
+ # Layer norm at the begining of the transformer layer.
623
+ # [seq_len, batch, hidden_size]
624
+ attention_input = self.input_layernorm(hidden_states)
625
+
626
+ # Self attention.
627
+ attention_outputs = self.attention(
628
+ attention_input,
629
+ position_ids,
630
+ attention_mask=attention_mask,
631
+ layer_id=layer_id,
632
+ layer_past=layer_past,
633
+ use_cache=use_cache,
634
+ output_attentions=output_attentions
635
+ )
636
+
637
+ attention_output = attention_outputs[0]
638
+
639
+ outputs = attention_outputs[1:]
640
+
641
+ # Residual connection.
642
+ alpha = (2 * self.num_layers) ** 0.5
643
+ hidden_states = attention_input * alpha + attention_output
644
+
645
+ mlp_input = self.post_attention_layernorm(hidden_states)
646
+
647
+ # MLP.
648
+ mlp_output = self.mlp(mlp_input)
649
+
650
+ # Second residual connection.
651
+ output = mlp_input * alpha + mlp_output
652
+
653
+ if use_cache:
654
+ outputs = (output,) + outputs
655
+ else:
656
+ outputs = (output,) + outputs[1:]
657
+
658
+ return outputs # hidden_states, present, attentions
659
+
660
+
661
+ class ChatGLMPreTrainedModel(PreTrainedModel):
662
+ """
663
+ An abstract class to handle weights initialization and
664
+ a simple interface for downloading and loading pretrained models.
665
+ """
666
+
667
+ is_parallelizable = False
668
+ supports_gradient_checkpointing = True
669
+ config_class = ChatGLMConfig
670
+ base_model_prefix = "transformer"
671
+ _no_split_modules = ["GLMBlock"]
672
+
673
+ def __init__(self, *inputs, **kwargs):
674
+ super().__init__(*inputs, **kwargs)
675
+
676
+ def _init_weights(self, module: nn.Module):
677
+ """Initialize the weights."""
678
+ return
679
+
680
+ def get_masks(self, input_ids, device):
681
+ batch_size, seq_length = input_ids.shape
682
+ context_lengths = [seq.tolist().index(self.config.bos_token_id) for seq in input_ids]
683
+ attention_mask = torch.ones((batch_size, seq_length, seq_length), device=device)
684
+ attention_mask.tril_()
685
+ for i, context_length in enumerate(context_lengths):
686
+ attention_mask[i, :, :context_length] = 1
687
+ attention_mask.unsqueeze_(1)
688
+ attention_mask = (attention_mask < 0.5).bool()
689
+
690
+ return attention_mask
691
+
692
+ def get_position_ids(self, input_ids, mask_positions, device, use_gmasks=None):
693
+ batch_size, seq_length = input_ids.shape
694
+ if use_gmasks is None:
695
+ use_gmasks = [False] * batch_size
696
+ context_lengths = [seq.tolist().index(self.config.bos_token_id) for seq in input_ids]
697
+ if self.position_encoding_2d:
698
+ position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
699
+ for i, context_length in enumerate(context_lengths):
700
+ position_ids[i, context_length:] = mask_positions[i]
701
+ block_position_ids = [torch.cat((
702
+ torch.zeros(context_length, dtype=torch.long, device=device),
703
+ torch.arange(seq_length - context_length, dtype=torch.long, device=device) + 1
704
+ )) for context_length in context_lengths]
705
+ block_position_ids = torch.stack(block_position_ids, dim=0)
706
+ position_ids = torch.stack((position_ids, block_position_ids), dim=1)
707
+ else:
708
+ position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
709
+ for i, context_length in enumerate(context_lengths):
710
+ if not use_gmasks[i]:
711
+ position_ids[i, context_length:] = mask_positions[i]
712
+
713
+ return position_ids
714
+
715
+ def _set_gradient_checkpointing(self, module, value=False):
716
+ if isinstance(module, ChatGLMModel):
717
+ module.gradient_checkpointing = value
718
+
719
+
720
+ CHATGLM_6B_START_DOCSTRING = r"""
721
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class.
722
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
723
+ usage and behavior.
724
+
725
+ Parameters:
726
+ config ([`~ChatGLM6BConfig`]): Model configuration class with all the parameters of the model.
727
+ Initializing with a config file does not load the weights associated with the model, only the configuration.
728
+ Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
729
+ """
730
+
731
+ CHATGLM_6B_INPUTS_DOCSTRING = r"""
732
+ Args:
733
+ input_ids (`torch.LongTensor` of shape `({0})`):
734
+ Indices of input sequence tokens in the vocabulary.
735
+
736
+ Indices can be obtained using [`ChatGLM6BTokenizer`].
737
+ See [`PreTrainedTokenizer.encode`] and
738
+ [`PreTrainedTokenizer.__call__`] for details.
739
+
740
+ [What are input IDs?](../glossary#input-ids)
741
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
742
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
743
+
744
+ - 1 for tokens that are **not masked**,
745
+ - 0 for tokens that are **masked**.
746
+
747
+ [What are attention masks?](../glossary#attention-mask)
748
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
749
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`:
750
+
751
+ - 0 corresponds to a *sentence A* token,
752
+ - 1 corresponds to a *sentence B* token.
753
+
754
+ [What are token type IDs?](../glossary#token-type-ids)
755
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
756
+ Indices of positions of each input sequence tokens in the position embeddings.
757
+ Selected in the range `[0, config.max_position_embeddings - 1]`.
758
+
759
+ [What are position IDs?](../glossary#position-ids)
760
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
761
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
762
+
763
+ - 1 indicates the head is **not masked**,
764
+ - 0 indicates the head is **masked**.
765
+
766
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
767
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
768
+ This is useful if you want more control over how to convert *input_ids* indices into associated vectors
769
+ than the model's internal embedding lookup matrix.
770
+ output_attentions (`bool`, *optional*):
771
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
772
+ tensors for more detail.
773
+ output_hidden_states (`bool`, *optional*):
774
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
775
+ more detail.
776
+ return_dict (`bool`, *optional*):
777
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
778
+ """
779
+
780
+
781
+ @add_start_docstrings(
782
+ "The bare ChatGLM-6B Model transformer outputting raw hidden-states without any specific head on top.",
783
+ CHATGLM_6B_START_DOCSTRING,
784
+ )
785
+ class ChatGLMModel(ChatGLMPreTrainedModel):
786
+ """
787
+
788
+ The model can behave as an encoder (with only self-attention) as well
789
+ as a decoder, in which case a layer of cross-attention is added between
790
+ the self-attention layers, following the architecture described in [Attention is
791
+ all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani,
792
+ Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
793
+
794
+ To behave as an decoder the model needs to be initialized with the
795
+ `is_decoder` argument of the configuration set to `True`.
796
+ To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder`
797
+ argument and `add_cross_attention` set to `True`; an
798
+ `encoder_hidden_states` is then expected as an input to the forward pass.
799
+ """
800
+
801
+ def __init__(self, config: ChatGLMConfig, empty_init=True):
802
+ super().__init__(config)
803
+ if empty_init:
804
+ init_method = skip_init
805
+ else:
806
+ init_method = default_init
807
+ # recording parameters
808
+ self.max_sequence_length = config.max_sequence_length
809
+ self.hidden_size = config.hidden_size
810
+ self.params_dtype = torch.half
811
+ self.num_attention_heads = config.num_attention_heads
812
+ self.vocab_size = config.vocab_size
813
+ self.num_layers = config.num_layers
814
+ self.layernorm_epsilon = config.layernorm_epsilon
815
+ self.inner_hidden_size = config.inner_hidden_size
816
+ self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads
817
+ self.position_encoding_2d = config.position_encoding_2d
818
+ self.pre_seq_len = config.pre_seq_len
819
+ self.prefix_projection = config.prefix_projection
820
+
821
+ self.word_embeddings = init_method(
822
+ torch.nn.Embedding,
823
+ num_embeddings=self.vocab_size, embedding_dim=self.hidden_size,
824
+ dtype=self.params_dtype
825
+ )
826
+ self.gradient_checkpointing = False
827
+
828
+ def get_layer(layer_id):
829
+ return GLMBlock(
830
+ self.hidden_size,
831
+ self.num_attention_heads,
832
+ self.layernorm_epsilon,
833
+ layer_id,
834
+ inner_hidden_size=self.inner_hidden_size,
835
+ hidden_size_per_attention_head=self.hidden_size_per_attention_head,
836
+ layernorm=LayerNorm,
837
+ use_bias=True,
838
+ params_dtype=self.params_dtype,
839
+ position_encoding_2d=self.position_encoding_2d,
840
+ empty_init=empty_init
841
+ )
842
+
843
+ self.layers = torch.nn.ModuleList(
844
+ [get_layer(layer_id) for layer_id in range(self.num_layers)]
845
+ )
846
+
847
+ # Final layer norm before output.
848
+ self.final_layernorm = LayerNorm(self.hidden_size, eps=self.layernorm_epsilon)
849
+
850
+ if self.pre_seq_len is not None:
851
+ for param in self.parameters():
852
+ param.requires_grad = False
853
+ self.prefix_tokens = torch.arange(self.pre_seq_len).long()
854
+ self.prefix_encoder = PrefixEncoder(config)
855
+ self.dropout = torch.nn.Dropout(0.1)
856
+
857
+ # total_params = sum(p.numel() for p in self.parameters())
858
+ # trainable_params = sum(p.numel() for p in self.parameters() if p.requires_grad)
859
+ # print("Using p-tuning v2: # trainable_params = {} / {}".format(trainable_params, total_params))
860
+
861
+ def get_input_embeddings(self):
862
+ return self.word_embeddings
863
+
864
+ def set_input_embeddings(self, new_embeddings: torch.Tensor):
865
+ self.word_embeddings = new_embeddings
866
+
867
+ def get_prompt(self, batch_size, device, dtype=torch.half):
868
+ prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)
869
+ past_key_values = self.prefix_encoder(prefix_tokens).type(dtype)
870
+ past_key_values = past_key_values.view(
871
+ batch_size,
872
+ self.pre_seq_len,
873
+ self.num_layers * 2,
874
+ self.num_attention_heads,
875
+ self.hidden_size // self.num_attention_heads
876
+ )
877
+ # seq_len, b, nh, hidden_size
878
+ past_key_values = self.dropout(past_key_values)
879
+ past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2)
880
+ # past_key_values = [(v[0], v[1]) for v in past_key_values]
881
+ return past_key_values
882
+
883
+ @add_start_docstrings_to_model_forward(CHATGLM_6B_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
884
+ @add_code_sample_docstrings(
885
+ checkpoint=_CHECKPOINT_FOR_DOC,
886
+ output_type=BaseModelOutputWithPastAndCrossAttentions,
887
+ config_class=_CONFIG_FOR_DOC,
888
+ )
889
+ def forward(
890
+ self,
891
+ input_ids: Optional[torch.LongTensor] = None,
892
+ position_ids: Optional[torch.LongTensor] = None,
893
+ attention_mask: Optional[torch.Tensor] = None,
894
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
895
+ inputs_embeds: Optional[torch.LongTensor] = None,
896
+ use_cache: Optional[bool] = None,
897
+ output_attentions: Optional[bool] = None,
898
+ output_hidden_states: Optional[bool] = None,
899
+ return_dict: Optional[bool] = None,
900
+ ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPast]:
901
+
902
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
903
+ output_hidden_states = (
904
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
905
+ )
906
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
907
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
908
+
909
+ if self.gradient_checkpointing and self.training:
910
+ if use_cache:
911
+ logger.warning_once(
912
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
913
+ )
914
+ use_cache = False
915
+
916
+ if input_ids is not None and inputs_embeds is not None:
917
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
918
+ elif input_ids is not None:
919
+ batch_size, seq_length = input_ids.shape[:2]
920
+ elif inputs_embeds is not None:
921
+ batch_size, seq_length = inputs_embeds.shape[:2]
922
+ else:
923
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
924
+
925
+ if inputs_embeds is None:
926
+ inputs_embeds = self.word_embeddings(input_ids)
927
+
928
+ if past_key_values is None:
929
+ if self.pre_seq_len is not None:
930
+ past_key_values = self.get_prompt(batch_size=input_ids.shape[0], device=input_ids.device,
931
+ dtype=inputs_embeds.dtype)
932
+ else:
933
+ past_key_values = tuple([None] * len(self.layers))
934
+
935
+ if attention_mask is None:
936
+ attention_mask = self.get_masks(
937
+ input_ids,
938
+ device=input_ids.device
939
+ )
940
+
941
+
942
+ if position_ids is None:
943
+ MASK, gMASK = self.config.mask_token_id, self.config.gmask_token_id
944
+ seqs = input_ids.tolist()
945
+
946
+ mask_positions, use_gmasks = [], []
947
+ for seq in seqs:
948
+ mask_token = gMASK if gMASK in seq else MASK
949
+ use_gmask = mask_token == gMASK
950
+ mask_positions.append(seq.index(mask_token))
951
+ use_gmasks.append(use_gmask)
952
+
953
+ position_ids = self.get_position_ids(
954
+ input_ids,
955
+ mask_positions=mask_positions,
956
+ device=input_ids.device,
957
+ use_gmasks=use_gmasks
958
+ )
959
+
960
+ if self.pre_seq_len is not None and attention_mask is not None:
961
+ prefix_attention_mask = torch.ones(batch_size, 1, input_ids.size(-1), self.pre_seq_len).to(
962
+ attention_mask.device)
963
+ prefix_attention_mask = (prefix_attention_mask < 0.5).bool()
964
+ attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=3)
965
+
966
+ # [seq_len, batch, hidden_size]
967
+ hidden_states = inputs_embeds.transpose(0, 1)
968
+
969
+ presents = () if use_cache else None
970
+ all_self_attentions = () if output_attentions else None
971
+ all_hidden_states = () if output_hidden_states else None
972
+
973
+ if attention_mask is None:
974
+ attention_mask = torch.zeros(1, 1, device=input_ids.device).bool()
975
+ else:
976
+ attention_mask = attention_mask.to(hidden_states.device)
977
+
978
+ for i, layer in enumerate(self.layers):
979
+
980
+ if output_hidden_states:
981
+ all_hidden_states = all_hidden_states + (hidden_states,)
982
+ layer_past = past_key_values[i]
983
+
984
+ if self.gradient_checkpointing and self.training:
985
+ layer_ret = torch.utils.checkpoint.checkpoint(
986
+ layer,
987
+ hidden_states,
988
+ position_ids,
989
+ attention_mask,
990
+ torch.tensor(i),
991
+ layer_past,
992
+ use_cache,
993
+ output_attentions
994
+ )
995
+ else:
996
+ layer_ret = layer(
997
+ hidden_states,
998
+ position_ids=position_ids,
999
+ attention_mask=attention_mask,
1000
+ layer_id=torch.tensor(i),
1001
+ layer_past=layer_past,
1002
+ use_cache=use_cache,
1003
+ output_attentions=output_attentions
1004
+ )
1005
+
1006
+ hidden_states = layer_ret[0]
1007
+
1008
+ if use_cache:
1009
+ presents = presents + (layer_ret[1],)
1010
+
1011
+ if output_attentions:
1012
+ all_self_attentions = all_self_attentions + (layer_ret[2 if use_cache else 1],)
1013
+
1014
+ # Final layer norm.
1015
+ hidden_states = self.final_layernorm(hidden_states)
1016
+
1017
+ if output_hidden_states:
1018
+ all_hidden_states = all_hidden_states + (hidden_states,)
1019
+
1020
+ if not return_dict:
1021
+ return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
1022
+
1023
+ return BaseModelOutputWithPast(
1024
+ last_hidden_state=hidden_states,
1025
+ past_key_values=presents,
1026
+ hidden_states=all_hidden_states,
1027
+ attentions=all_self_attentions,
1028
+ )
1029
+
1030
+
1031
+ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
1032
+ def __init__(self, config: ChatGLMConfig, empty_init=True):
1033
+ super().__init__(config)
1034
+ if empty_init:
1035
+ init_method = skip_init
1036
+ else:
1037
+ init_method = default_init
1038
+
1039
+ # self.hidden_size = config.hidden_size
1040
+ # self.params_dtype = torch.half
1041
+ # self.vocab_size = config.vocab_size
1042
+ self.max_sequence_length = config.max_sequence_length
1043
+
1044
+ self.position_encoding_2d = config.position_encoding_2d
1045
+
1046
+ self.transformer = ChatGLMModel(config, empty_init=empty_init)
1047
+
1048
+ self.lm_head = init_method(
1049
+ nn.Linear,
1050
+ config.hidden_size,
1051
+ config.vocab_size,
1052
+ bias=False,
1053
+ dtype=torch.half
1054
+ )
1055
+
1056
+ self.config = config
1057
+
1058
+ self.quantized = False
1059
+
1060
+ if self.config.quantization_bit:
1061
+ self.quantize(self.config.quantization_bit, empty_init=True)
1062
+
1063
+ def get_output_embeddings(self):
1064
+ return self.lm_head
1065
+
1066
+ def set_output_embeddings(self, new_embeddings):
1067
+ self.lm_head = new_embeddings
1068
+
1069
+ def _update_model_kwargs_for_generation(
1070
+ self,
1071
+ outputs: ModelOutput,
1072
+ model_kwargs: Dict[str, Any],
1073
+ is_encoder_decoder: bool = False,
1074
+ standardize_cache_format: bool = False,
1075
+ ) -> Dict[str, Any]:
1076
+ # update past_key_values
1077
+ model_kwargs["past_key_values"] = self._extract_past_from_model_output(
1078
+ outputs, standardize_cache_format=standardize_cache_format
1079
+ )
1080
+
1081
+ # update attention mask
1082
+ if "attention_mask" in model_kwargs:
1083
+ attention_mask = model_kwargs["attention_mask"]
1084
+ if attention_mask is not None and attention_mask.dtype == torch.bool:
1085
+ attention_mask = torch.cat(
1086
+ [attention_mask, attention_mask.new_ones((*attention_mask.shape[:3], 1))], dim=3)
1087
+ new_attention_mask = attention_mask[:, :, -1:].clone()
1088
+ new_attention_mask[..., -1] = False
1089
+ model_kwargs["attention_mask"] = torch.cat(
1090
+ [attention_mask, new_attention_mask], dim=2
1091
+ )
1092
+
1093
+ # update position ids
1094
+ if "position_ids" in model_kwargs:
1095
+ position_ids = model_kwargs["position_ids"]
1096
+ new_position_id = position_ids[..., -1:].clone()
1097
+ new_position_id[:, 1, :] += 1
1098
+ model_kwargs["position_ids"] = torch.cat(
1099
+ [position_ids, new_position_id], dim=-1
1100
+ )
1101
+
1102
+ return model_kwargs
1103
+
1104
+ def prepare_inputs_for_generation(
1105
+ self,
1106
+ input_ids: torch.LongTensor,
1107
+ past: Optional[torch.Tensor] = None,
1108
+ past_key_values: Optional[torch.Tensor] = None,
1109
+ attention_mask: Optional[torch.Tensor] = None,
1110
+ position_ids: Optional[torch.Tensor] = None,
1111
+ **kwargs
1112
+ ) -> dict:
1113
+ batch_size, seq_length = input_ids.shape
1114
+ MASK, gMASK = self.config.mask_token_id, self.config.gmask_token_id
1115
+ seqs = input_ids.tolist()
1116
+ mask_positions, use_gmasks = [], []
1117
+ for seq in seqs:
1118
+ mask_token = gMASK if gMASK in seq else MASK
1119
+ use_gmask = mask_token == gMASK
1120
+ mask_positions.append(seq.index(mask_token))
1121
+ use_gmasks.append(use_gmask)
1122
+
1123
+ # only last token for input_ids if past is not None
1124
+ if past is not None or past_key_values is not None:
1125
+ last_token = input_ids[:, -1].unsqueeze(-1)
1126
+ if attention_mask is not None and attention_mask.dtype == torch.bool:
1127
+ attention_mask = attention_mask[:, :, -1:]
1128
+ else:
1129
+ attention_mask = None
1130
+ if position_ids is not None:
1131
+ position_ids = position_ids[..., -1:]
1132
+ else:
1133
+ context_lengths = [seq.index(self.config.bos_token_id) for seq in seqs]
1134
+ if self.position_encoding_2d:
1135
+ position_ids = torch.tensor(
1136
+ [[mask_position, seq_length - context_length] for mask_position, context_length in
1137
+ zip(mask_positions, context_lengths)], dtype=torch.long, device=input_ids.device).unsqueeze(-1)
1138
+ else:
1139
+ position_ids = torch.tensor([mask_position for mask_position in mask_positions], dtype=torch.long,
1140
+ device=input_ids.device).unsqueeze(-1)
1141
+
1142
+ if past is None:
1143
+ past = past_key_values
1144
+ return {
1145
+ "input_ids": last_token,
1146
+ "past_key_values": past,
1147
+ "position_ids": position_ids,
1148
+ "attention_mask": attention_mask
1149
+ }
1150
+ else:
1151
+ if attention_mask is not None and attention_mask.dtype != torch.bool:
1152
+ logger.warning_once(f"The dtype of attention mask ({attention_mask.dtype}) is not bool")
1153
+ attention_mask = None
1154
+ if attention_mask is None:
1155
+ attention_mask = self.get_masks(
1156
+ input_ids,
1157
+ device=input_ids.device
1158
+ )
1159
+ if position_ids is None:
1160
+ position_ids = self.get_position_ids(
1161
+ input_ids,
1162
+ device=input_ids.device,
1163
+ mask_positions=mask_positions,
1164
+ use_gmasks=use_gmasks
1165
+ )
1166
+
1167
+ return {
1168
+ "input_ids": input_ids,
1169
+ "past_key_values": past,
1170
+ "position_ids": position_ids,
1171
+ "attention_mask": attention_mask
1172
+ }
1173
+
1174
+ def forward(
1175
+ self,
1176
+ input_ids: Optional[torch.Tensor] = None,
1177
+ position_ids: Optional[torch.Tensor] = None,
1178
+ attention_mask: Optional[torch.Tensor] = None,
1179
+ past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
1180
+ inputs_embeds: Optional[torch.Tensor] = None,
1181
+ labels: Optional[torch.Tensor] = None,
1182
+ use_cache: Optional[bool] = None,
1183
+ output_attentions: Optional[bool] = None,
1184
+ output_hidden_states: Optional[bool] = None,
1185
+ return_dict: Optional[bool] = None,
1186
+ ):
1187
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1188
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1189
+
1190
+ transformer_outputs = self.transformer(
1191
+ input_ids=input_ids,
1192
+ position_ids=position_ids,
1193
+ attention_mask=attention_mask,
1194
+ past_key_values=past_key_values,
1195
+ inputs_embeds=inputs_embeds,
1196
+ use_cache=use_cache,
1197
+ output_attentions=output_attentions,
1198
+ output_hidden_states=output_hidden_states,
1199
+ return_dict=return_dict,
1200
+ )
1201
+
1202
+ hidden_states = transformer_outputs[0]
1203
+
1204
+ lm_logits = self.lm_head(hidden_states).permute(1, 0, 2).contiguous()
1205
+
1206
+ loss = None
1207
+ if labels is not None:
1208
+ lm_logits = lm_logits.to(torch.float32)
1209
+
1210
+ # Shift so that tokens < n predict n
1211
+ shift_logits = lm_logits[..., :-1, :].contiguous()
1212
+ shift_labels = labels[..., 1:].contiguous()
1213
+ # Flatten the tokens
1214
+ loss_fct = CrossEntropyLoss(ignore_index=-100)
1215
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
1216
+
1217
+ lm_logits = lm_logits.to(hidden_states.dtype)
1218
+ loss = loss.to(hidden_states.dtype)
1219
+
1220
+ if not return_dict:
1221
+ output = (lm_logits,) + transformer_outputs[1:]
1222
+ return ((loss,) + output) if loss is not None else output
1223
+
1224
+ return CausalLMOutputWithPast(
1225
+ loss=loss,
1226
+ logits=lm_logits,
1227
+ past_key_values=transformer_outputs.past_key_values,
1228
+ hidden_states=transformer_outputs.hidden_states,
1229
+ attentions=transformer_outputs.attentions,
1230
+ )
1231
+
1232
+ @staticmethod
1233
+ def _reorder_cache(
1234
+ past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
1235
+ ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
1236
+ """
1237
+ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
1238
+ [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
1239
+ beam_idx at every generation step.
1240
+
1241
+ Output shares the same memory storage as `past`.
1242
+ """
1243
+ return tuple(
1244
+ (
1245
+ layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)),
1246
+ layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)),
1247
+ )
1248
+ for layer_past in past
1249
+ )
1250
+
1251
+ def process_response(self, response):
1252
+ response = response.strip()
1253
+ response = response.replace("[[训练时间]]", "2023年")
1254
+ punkts = [
1255
+ [",", ","],
1256
+ ["!", "!"],
1257
+ [":", ":"],
1258
+ [";", ";"],
1259
+ ["\?", "?"],
1260
+ ]
1261
+ for item in punkts:
1262
+ response = re.sub(r"([\u4e00-\u9fff])%s" % item[0], r"\1%s" % item[1], response)
1263
+ response = re.sub(r"%s([\u4e00-\u9fff])" % item[0], r"%s\1" % item[1], response)
1264
+ return response
1265
+
1266
+ @torch.no_grad()
1267
+ def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 2048, num_beams=1,
1268
+ do_sample=True, top_p=0.7, temperature=0.95, logits_processor=None, **kwargs):
1269
+ if history is None:
1270
+ history = []
1271
+ if logits_processor is None:
1272
+ logits_processor = LogitsProcessorList()
1273
+ logits_processor.append(InvalidScoreLogitsProcessor())
1274
+ gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
1275
+ "temperature": temperature, "logits_processor": logits_processor, **kwargs}
1276
+ if not history:
1277
+ prompt = query
1278
+ else:
1279
+ prompt = ""
1280
+ for i, (old_query, response) in enumerate(history):
1281
+ prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response)
1282
+ prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
1283
+ inputs = tokenizer([prompt], return_tensors="pt")
1284
+ inputs = inputs.to(self.device)
1285
+ outputs = self.generate(**inputs, **gen_kwargs)
1286
+ outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
1287
+ response = tokenizer.decode(outputs)
1288
+ response = self.process_response(response)
1289
+ history = history + [(query, response)]
1290
+ return response, history
1291
+
1292
+ @torch.no_grad()
1293
+ def stream_chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 2048,
1294
+ do_sample=True, top_p=0.7, temperature=0.95, logits_processor=None, **kwargs):
1295
+ if history is None:
1296
+ history = []
1297
+ if logits_processor is None:
1298
+ logits_processor = LogitsProcessorList()
1299
+ logits_processor.append(InvalidScoreLogitsProcessor())
1300
+ gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p,
1301
+ "temperature": temperature, "logits_processor": logits_processor, **kwargs}
1302
+ if not history:
1303
+ prompt = query
1304
+ else:
1305
+ prompt = ""
1306
+ for i, (old_query, response) in enumerate(history):
1307
+ prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response)
1308
+ prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
1309
+ inputs = tokenizer([prompt], return_tensors="pt")
1310
+ inputs = inputs.to(self.device)
1311
+ for outputs in self.stream_generate(**inputs, **gen_kwargs):
1312
+ outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
1313
+ response = tokenizer.decode(outputs)
1314
+ response = self.process_response(response)
1315
+ new_history = history + [(query, response)]
1316
+ yield response, new_history
1317
+
1318
+ @torch.no_grad()
1319
+ def stream_generate(
1320
+ self,
1321
+ input_ids,
1322
+ generation_config: Optional[GenerationConfig] = None,
1323
+ logits_processor: Optional[LogitsProcessorList] = None,
1324
+ stopping_criteria: Optional[StoppingCriteriaList] = None,
1325
+ prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
1326
+ **kwargs,
1327
+ ):
1328
+ batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
1329
+
1330
+ if generation_config is None:
1331
+ generation_config = self.generation_config
1332
+ generation_config = copy.deepcopy(generation_config)
1333
+ model_kwargs = generation_config.update(**kwargs)
1334
+ bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id
1335
+
1336
+ if isinstance(eos_token_id, int):
1337
+ eos_token_id = [eos_token_id]
1338
+
1339
+ has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
1340
+ if has_default_max_length and generation_config.max_new_tokens is None:
1341
+ warnings.warn(
1342
+ f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
1343
+ "This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
1344
+ " recommend using `max_new_tokens` to control the maximum length of the generation.",
1345
+ UserWarning,
1346
+ )
1347
+ elif generation_config.max_new_tokens is not None:
1348
+ generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
1349
+ if not has_default_max_length:
1350
+ logger.warn(
1351
+ f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
1352
+ f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
1353
+ "Please refer to the documentation for more information. "
1354
+ "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
1355
+ UserWarning,
1356
+ )
1357
+
1358
+ if input_ids_seq_length >= generation_config.max_length:
1359
+ input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
1360
+ logger.warning(
1361
+ f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
1362
+ f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
1363
+ " increasing `max_new_tokens`."
1364
+ )
1365
+
1366
+ # 2. Set generation parameters if not already defined
1367
+ logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
1368
+ stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
1369
+
1370
+ logits_processor = self._get_logits_processor(
1371
+ generation_config=generation_config,
1372
+ input_ids_seq_length=input_ids_seq_length,
1373
+ encoder_input_ids=input_ids,
1374
+ prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
1375
+ logits_processor=logits_processor,
1376
+ )
1377
+
1378
+ stopping_criteria = self._get_stopping_criteria(
1379
+ generation_config=generation_config, stopping_criteria=stopping_criteria
1380
+ )
1381
+ logits_warper = self._get_logits_warper(generation_config)
1382
+
1383
+ unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
1384
+ scores = None
1385
+ while True:
1386
+ model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
1387
+ # forward pass to get next token
1388
+ outputs = self(
1389
+ **model_inputs,
1390
+ return_dict=True,
1391
+ output_attentions=False,
1392
+ output_hidden_states=False,
1393
+ )
1394
+
1395
+ next_token_logits = outputs.logits[:, -1, :]
1396
+
1397
+ # pre-process distribution
1398
+ next_token_scores = logits_processor(input_ids, next_token_logits)
1399
+ next_token_scores = logits_warper(input_ids, next_token_scores)
1400
+
1401
+ # sample
1402
+ probs = nn.functional.softmax(next_token_scores, dim=-1)
1403
+ if generation_config.do_sample:
1404
+ next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
1405
+ else:
1406
+ next_tokens = torch.argmax(probs, dim=-1)
1407
+
1408
+ # update generated ids, model inputs, and length for next step
1409
+ input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
1410
+ model_kwargs = self._update_model_kwargs_for_generation(
1411
+ outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
1412
+ )
1413
+ unfinished_sequences = unfinished_sequences.mul((sum(next_tokens != i for i in eos_token_id)).long())
1414
+
1415
+ # stop when each sentence is finished, or if we exceed the maximum length
1416
+ if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
1417
+ break
1418
+ yield input_ids
1419
+
1420
+ def quantize(self, bits: int, empty_init=False, **kwargs):
1421
+ if bits == 0:
1422
+ return
1423
+
1424
+ from .quantization import quantize
1425
+
1426
+ if self.quantized:
1427
+ logger.info("Already quantized.")
1428
+ return self
1429
+
1430
+ self.quantized = True
1431
+
1432
+ self.config.quantization_bit = bits
1433
+
1434
+ self.transformer = quantize(self.transformer, bits, empty_init=empty_init, **kwargs)
1435
+ return self
checkpoint-2000/pytorch_model-00001-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e48d1194d23b4d83ab134a113cb070b6aa05b5d3588e7e5f858b677c5d43ede5
3
+ size 12346621179
checkpoint-2000/pytorch_model-00002-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42c3b591bed51fc1383a69a4c9d0218e14b02f913526955de448509464fec6b8
3
+ size 12346585635
checkpoint-2000/pytorch_model.bin.index.json ADDED
@@ -0,0 +1,375 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 13415859968
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00002-of-00002.bin",
7
+ "transformer.final_layernorm.bias": "pytorch_model-00002-of-00002.bin",
8
+ "transformer.final_layernorm.weight": "pytorch_model-00002-of-00002.bin",
9
+ "transformer.layers.0.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
10
+ "transformer.layers.0.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
11
+ "transformer.layers.0.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
12
+ "transformer.layers.0.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
13
+ "transformer.layers.0.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
14
+ "transformer.layers.0.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
15
+ "transformer.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
16
+ "transformer.layers.0.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
17
+ "transformer.layers.0.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
18
+ "transformer.layers.0.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
19
+ "transformer.layers.0.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
20
+ "transformer.layers.0.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
21
+ "transformer.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
22
+ "transformer.layers.1.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
23
+ "transformer.layers.1.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
24
+ "transformer.layers.1.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
25
+ "transformer.layers.1.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
26
+ "transformer.layers.1.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
27
+ "transformer.layers.1.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
28
+ "transformer.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
29
+ "transformer.layers.1.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
30
+ "transformer.layers.1.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
31
+ "transformer.layers.1.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
32
+ "transformer.layers.1.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
33
+ "transformer.layers.1.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
34
+ "transformer.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
35
+ "transformer.layers.10.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
36
+ "transformer.layers.10.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
37
+ "transformer.layers.10.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
38
+ "transformer.layers.10.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
39
+ "transformer.layers.10.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
40
+ "transformer.layers.10.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
41
+ "transformer.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
42
+ "transformer.layers.10.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
43
+ "transformer.layers.10.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
44
+ "transformer.layers.10.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
45
+ "transformer.layers.10.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
46
+ "transformer.layers.10.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
47
+ "transformer.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
48
+ "transformer.layers.11.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
49
+ "transformer.layers.11.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
50
+ "transformer.layers.11.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
51
+ "transformer.layers.11.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
52
+ "transformer.layers.11.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
53
+ "transformer.layers.11.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
54
+ "transformer.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
55
+ "transformer.layers.11.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
56
+ "transformer.layers.11.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
57
+ "transformer.layers.11.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
58
+ "transformer.layers.11.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
59
+ "transformer.layers.11.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
60
+ "transformer.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
61
+ "transformer.layers.12.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
62
+ "transformer.layers.12.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
63
+ "transformer.layers.12.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
64
+ "transformer.layers.12.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
65
+ "transformer.layers.12.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
66
+ "transformer.layers.12.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
67
+ "transformer.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
68
+ "transformer.layers.12.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
69
+ "transformer.layers.12.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
70
+ "transformer.layers.12.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
71
+ "transformer.layers.12.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
72
+ "transformer.layers.12.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
73
+ "transformer.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
74
+ "transformer.layers.13.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
75
+ "transformer.layers.13.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
76
+ "transformer.layers.13.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
77
+ "transformer.layers.13.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
78
+ "transformer.layers.13.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
79
+ "transformer.layers.13.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
80
+ "transformer.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
81
+ "transformer.layers.13.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
82
+ "transformer.layers.13.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
83
+ "transformer.layers.13.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
84
+ "transformer.layers.13.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
85
+ "transformer.layers.13.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
86
+ "transformer.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
87
+ "transformer.layers.14.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
88
+ "transformer.layers.14.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
89
+ "transformer.layers.14.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
90
+ "transformer.layers.14.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
91
+ "transformer.layers.14.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
92
+ "transformer.layers.14.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
93
+ "transformer.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
94
+ "transformer.layers.14.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
95
+ "transformer.layers.14.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
96
+ "transformer.layers.14.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
97
+ "transformer.layers.14.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
98
+ "transformer.layers.14.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
99
+ "transformer.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
100
+ "transformer.layers.15.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
101
+ "transformer.layers.15.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
102
+ "transformer.layers.15.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
103
+ "transformer.layers.15.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
104
+ "transformer.layers.15.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
105
+ "transformer.layers.15.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
106
+ "transformer.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
107
+ "transformer.layers.15.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
108
+ "transformer.layers.15.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
109
+ "transformer.layers.15.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
110
+ "transformer.layers.15.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
111
+ "transformer.layers.15.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
112
+ "transformer.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
113
+ "transformer.layers.16.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
114
+ "transformer.layers.16.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
115
+ "transformer.layers.16.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
116
+ "transformer.layers.16.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
117
+ "transformer.layers.16.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
118
+ "transformer.layers.16.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
119
+ "transformer.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
120
+ "transformer.layers.16.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
121
+ "transformer.layers.16.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
122
+ "transformer.layers.16.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
123
+ "transformer.layers.16.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
124
+ "transformer.layers.16.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
125
+ "transformer.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
126
+ "transformer.layers.17.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
127
+ "transformer.layers.17.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
128
+ "transformer.layers.17.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
129
+ "transformer.layers.17.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
130
+ "transformer.layers.17.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
131
+ "transformer.layers.17.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
132
+ "transformer.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
133
+ "transformer.layers.17.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
134
+ "transformer.layers.17.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
135
+ "transformer.layers.17.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
136
+ "transformer.layers.17.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
137
+ "transformer.layers.17.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
138
+ "transformer.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
139
+ "transformer.layers.18.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
140
+ "transformer.layers.18.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
141
+ "transformer.layers.18.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
142
+ "transformer.layers.18.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
143
+ "transformer.layers.18.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
144
+ "transformer.layers.18.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
145
+ "transformer.layers.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
146
+ "transformer.layers.18.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
147
+ "transformer.layers.18.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
148
+ "transformer.layers.18.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
149
+ "transformer.layers.18.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
150
+ "transformer.layers.18.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
151
+ "transformer.layers.18.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
152
+ "transformer.layers.19.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
153
+ "transformer.layers.19.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
154
+ "transformer.layers.19.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
155
+ "transformer.layers.19.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
156
+ "transformer.layers.19.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
157
+ "transformer.layers.19.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
158
+ "transformer.layers.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
159
+ "transformer.layers.19.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
160
+ "transformer.layers.19.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
161
+ "transformer.layers.19.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
162
+ "transformer.layers.19.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
163
+ "transformer.layers.19.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
164
+ "transformer.layers.19.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
165
+ "transformer.layers.2.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
166
+ "transformer.layers.2.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
167
+ "transformer.layers.2.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
168
+ "transformer.layers.2.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
169
+ "transformer.layers.2.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
170
+ "transformer.layers.2.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
171
+ "transformer.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
172
+ "transformer.layers.2.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
173
+ "transformer.layers.2.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
174
+ "transformer.layers.2.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
175
+ "transformer.layers.2.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
176
+ "transformer.layers.2.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
177
+ "transformer.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
178
+ "transformer.layers.20.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
179
+ "transformer.layers.20.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
180
+ "transformer.layers.20.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
181
+ "transformer.layers.20.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
182
+ "transformer.layers.20.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
183
+ "transformer.layers.20.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
184
+ "transformer.layers.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
185
+ "transformer.layers.20.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
186
+ "transformer.layers.20.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
187
+ "transformer.layers.20.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
188
+ "transformer.layers.20.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
189
+ "transformer.layers.20.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
190
+ "transformer.layers.20.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
191
+ "transformer.layers.21.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
192
+ "transformer.layers.21.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
193
+ "transformer.layers.21.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
194
+ "transformer.layers.21.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
195
+ "transformer.layers.21.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
196
+ "transformer.layers.21.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
197
+ "transformer.layers.21.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
198
+ "transformer.layers.21.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
199
+ "transformer.layers.21.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
200
+ "transformer.layers.21.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
201
+ "transformer.layers.21.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
202
+ "transformer.layers.21.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
203
+ "transformer.layers.21.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
204
+ "transformer.layers.22.attention.dense.bias": "pytorch_model-00002-of-00002.bin",
205
+ "transformer.layers.22.attention.dense.weight": "pytorch_model-00002-of-00002.bin",
206
+ "transformer.layers.22.attention.query_key_value.bias": "pytorch_model-00002-of-00002.bin",
207
+ "transformer.layers.22.attention.query_key_value.weight": "pytorch_model-00002-of-00002.bin",
208
+ "transformer.layers.22.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
209
+ "transformer.layers.22.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
210
+ "transformer.layers.22.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
211
+ "transformer.layers.22.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00002.bin",
212
+ "transformer.layers.22.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00002.bin",
213
+ "transformer.layers.22.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00002.bin",
214
+ "transformer.layers.22.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00002.bin",
215
+ "transformer.layers.22.post_attention_layernorm.bias": "pytorch_model-00002-of-00002.bin",
216
+ "transformer.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
217
+ "transformer.layers.23.attention.dense.bias": "pytorch_model-00002-of-00002.bin",
218
+ "transformer.layers.23.attention.dense.weight": "pytorch_model-00002-of-00002.bin",
219
+ "transformer.layers.23.attention.query_key_value.bias": "pytorch_model-00002-of-00002.bin",
220
+ "transformer.layers.23.attention.query_key_value.weight": "pytorch_model-00002-of-00002.bin",
221
+ "transformer.layers.23.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
222
+ "transformer.layers.23.input_layernorm.bias": "pytorch_model-00002-of-00002.bin",
223
+ "transformer.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
224
+ "transformer.layers.23.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00002.bin",
225
+ "transformer.layers.23.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00002.bin",
226
+ "transformer.layers.23.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00002.bin",
227
+ "transformer.layers.23.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00002.bin",
228
+ "transformer.layers.23.post_attention_layernorm.bias": "pytorch_model-00002-of-00002.bin",
229
+ "transformer.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
230
+ "transformer.layers.24.attention.dense.bias": "pytorch_model-00002-of-00002.bin",
231
+ "transformer.layers.24.attention.dense.weight": "pytorch_model-00002-of-00002.bin",
232
+ "transformer.layers.24.attention.query_key_value.bias": "pytorch_model-00002-of-00002.bin",
233
+ "transformer.layers.24.attention.query_key_value.weight": "pytorch_model-00002-of-00002.bin",
234
+ "transformer.layers.24.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
235
+ "transformer.layers.24.input_layernorm.bias": "pytorch_model-00002-of-00002.bin",
236
+ "transformer.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
237
+ "transformer.layers.24.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00002.bin",
238
+ "transformer.layers.24.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00002.bin",
239
+ "transformer.layers.24.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00002.bin",
240
+ "transformer.layers.24.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00002.bin",
241
+ "transformer.layers.24.post_attention_layernorm.bias": "pytorch_model-00002-of-00002.bin",
242
+ "transformer.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
243
+ "transformer.layers.25.attention.dense.bias": "pytorch_model-00002-of-00002.bin",
244
+ "transformer.layers.25.attention.dense.weight": "pytorch_model-00002-of-00002.bin",
245
+ "transformer.layers.25.attention.query_key_value.bias": "pytorch_model-00002-of-00002.bin",
246
+ "transformer.layers.25.attention.query_key_value.weight": "pytorch_model-00002-of-00002.bin",
247
+ "transformer.layers.25.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
248
+ "transformer.layers.25.input_layernorm.bias": "pytorch_model-00002-of-00002.bin",
249
+ "transformer.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
250
+ "transformer.layers.25.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00002.bin",
251
+ "transformer.layers.25.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00002.bin",
252
+ "transformer.layers.25.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00002.bin",
253
+ "transformer.layers.25.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00002.bin",
254
+ "transformer.layers.25.post_attention_layernorm.bias": "pytorch_model-00002-of-00002.bin",
255
+ "transformer.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
256
+ "transformer.layers.26.attention.dense.bias": "pytorch_model-00002-of-00002.bin",
257
+ "transformer.layers.26.attention.dense.weight": "pytorch_model-00002-of-00002.bin",
258
+ "transformer.layers.26.attention.query_key_value.bias": "pytorch_model-00002-of-00002.bin",
259
+ "transformer.layers.26.attention.query_key_value.weight": "pytorch_model-00002-of-00002.bin",
260
+ "transformer.layers.26.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
261
+ "transformer.layers.26.input_layernorm.bias": "pytorch_model-00002-of-00002.bin",
262
+ "transformer.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
263
+ "transformer.layers.26.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00002.bin",
264
+ "transformer.layers.26.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00002.bin",
265
+ "transformer.layers.26.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00002.bin",
266
+ "transformer.layers.26.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00002.bin",
267
+ "transformer.layers.26.post_attention_layernorm.bias": "pytorch_model-00002-of-00002.bin",
268
+ "transformer.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
269
+ "transformer.layers.27.attention.dense.bias": "pytorch_model-00002-of-00002.bin",
270
+ "transformer.layers.27.attention.dense.weight": "pytorch_model-00002-of-00002.bin",
271
+ "transformer.layers.27.attention.query_key_value.bias": "pytorch_model-00002-of-00002.bin",
272
+ "transformer.layers.27.attention.query_key_value.weight": "pytorch_model-00002-of-00002.bin",
273
+ "transformer.layers.27.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
274
+ "transformer.layers.27.input_layernorm.bias": "pytorch_model-00002-of-00002.bin",
275
+ "transformer.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
276
+ "transformer.layers.27.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00002.bin",
277
+ "transformer.layers.27.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00002.bin",
278
+ "transformer.layers.27.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00002.bin",
279
+ "transformer.layers.27.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00002.bin",
280
+ "transformer.layers.27.post_attention_layernorm.bias": "pytorch_model-00002-of-00002.bin",
281
+ "transformer.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
282
+ "transformer.layers.3.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
283
+ "transformer.layers.3.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
284
+ "transformer.layers.3.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
285
+ "transformer.layers.3.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
286
+ "transformer.layers.3.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
287
+ "transformer.layers.3.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
288
+ "transformer.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
289
+ "transformer.layers.3.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
290
+ "transformer.layers.3.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
291
+ "transformer.layers.3.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
292
+ "transformer.layers.3.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
293
+ "transformer.layers.3.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
294
+ "transformer.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
295
+ "transformer.layers.4.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
296
+ "transformer.layers.4.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
297
+ "transformer.layers.4.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
298
+ "transformer.layers.4.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
299
+ "transformer.layers.4.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
300
+ "transformer.layers.4.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
301
+ "transformer.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
302
+ "transformer.layers.4.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
303
+ "transformer.layers.4.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
304
+ "transformer.layers.4.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
305
+ "transformer.layers.4.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
306
+ "transformer.layers.4.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
307
+ "transformer.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
308
+ "transformer.layers.5.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
309
+ "transformer.layers.5.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
310
+ "transformer.layers.5.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
311
+ "transformer.layers.5.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
312
+ "transformer.layers.5.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
313
+ "transformer.layers.5.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
314
+ "transformer.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
315
+ "transformer.layers.5.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
316
+ "transformer.layers.5.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
317
+ "transformer.layers.5.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
318
+ "transformer.layers.5.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
319
+ "transformer.layers.5.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
320
+ "transformer.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
321
+ "transformer.layers.6.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
322
+ "transformer.layers.6.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
323
+ "transformer.layers.6.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
324
+ "transformer.layers.6.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
325
+ "transformer.layers.6.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
326
+ "transformer.layers.6.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
327
+ "transformer.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
328
+ "transformer.layers.6.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
329
+ "transformer.layers.6.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
330
+ "transformer.layers.6.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
331
+ "transformer.layers.6.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
332
+ "transformer.layers.6.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
333
+ "transformer.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
334
+ "transformer.layers.7.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
335
+ "transformer.layers.7.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
336
+ "transformer.layers.7.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
337
+ "transformer.layers.7.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
338
+ "transformer.layers.7.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
339
+ "transformer.layers.7.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
340
+ "transformer.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
341
+ "transformer.layers.7.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
342
+ "transformer.layers.7.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
343
+ "transformer.layers.7.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
344
+ "transformer.layers.7.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
345
+ "transformer.layers.7.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
346
+ "transformer.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
347
+ "transformer.layers.8.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
348
+ "transformer.layers.8.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
349
+ "transformer.layers.8.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
350
+ "transformer.layers.8.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
351
+ "transformer.layers.8.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
352
+ "transformer.layers.8.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
353
+ "transformer.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
354
+ "transformer.layers.8.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
355
+ "transformer.layers.8.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
356
+ "transformer.layers.8.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
357
+ "transformer.layers.8.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
358
+ "transformer.layers.8.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
359
+ "transformer.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
360
+ "transformer.layers.9.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
361
+ "transformer.layers.9.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
362
+ "transformer.layers.9.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
363
+ "transformer.layers.9.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
364
+ "transformer.layers.9.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
365
+ "transformer.layers.9.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
366
+ "transformer.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
367
+ "transformer.layers.9.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
368
+ "transformer.layers.9.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
369
+ "transformer.layers.9.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
370
+ "transformer.layers.9.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
371
+ "transformer.layers.9.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
372
+ "transformer.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
373
+ "transformer.word_embeddings.weight": "pytorch_model-00001-of-00002.bin"
374
+ }
375
+ }
checkpoint-2000/quantization.py ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.nn import Linear
2
+ from torch.nn.parameter import Parameter
3
+
4
+ import bz2
5
+ import torch
6
+ import base64
7
+ import ctypes
8
+ from transformers.utils import logging
9
+
10
+ from typing import List
11
+ from functools import partial
12
+
13
+ logger = logging.get_logger(__name__)
14
+
15
+ try:
16
+ from cpm_kernels.kernels.base import LazyKernelCModule, KernelFunction, round_up
17
+
18
+ class Kernel:
19
+ def __init__(self, code: bytes, function_names: List[str]):
20
+ self.code = code
21
+ self._function_names = function_names
22
+ self._cmodule = LazyKernelCModule(self.code)
23
+
24
+ for name in self._function_names:
25
+ setattr(self, name, KernelFunction(self._cmodule, name))
26
+
27
+ quantization_code = "$QlpoOTFBWSZTWU9yuJUAQHN//////////f/n/8/n///n//bt4dTidcVx8X3V9FV/92/v4B7/AD5FBQFAAAChSgKpFCFAFVSigUAAAEKhSgUUqgFBKigqVREQAABQBQIANDTTIGI00BkZBkNGE0A0BkBkGQGRkaNAaAGQNBoGgDIAAYIGTI0DQAQAaGmmQMRpoDIyDIaMJoBoDIDIMgMjI0aA0AMgaDQNAGQAAwQMmRoGgAgA0NNMgYjTQGRkGQ0YTQDQGQGQZAZGRo0BoAZA0GgaAMgABggZMjQNABABoaaZAxGmgMjIMhowmgGgMgMgyAyMjRoDQAyBoNA0AZAADBAyZGgaAAmqU1NEgJqnptU/Sn4jRR6J6epk2pqb1Q/SgAPUGgyNNGjQ2SBpoAZAAGg0NB6mgDIAAAAA2oaApSREBNAARhGiYEaEwU8pvImlP0k2aam1GaGqbFNM1MHpTwmkepmyU9R6nqPKekHqNNPUxNGhp6n6p6QaZ6o9TG1GMqcoV9ly6nRanHlq6zPNbnGZNi6HSug+2nPiZ13XcnFYZW+45W11CumhzYhchOJ2GLLV1OBjBjGf4TptOddTSOcVxhqYZMYwZXZZY00zI1paX5X9J+b+f4e+x43RXSxXPOdquiGpduatGyXneN696M9t4HU2eR5XX/kPhP261NTx3JO1Ow7LyuDmeo9a7d351T1ZxnvnrvYnrXv/hXxPCeuYx2XsNmO003eg9J3Z6U7b23meJ4ri01OdzTk9BNO96brz+qT5nuvvH3ds/G+m/JcG/F2XYuhXlvO+jP7U3XgrzPN/lr8Sf1n6j4j7jZs+s/T0tNaNNYzTs12rxjwztHlnire3Nzc3N1wuBwOBwXBvZfoHpD7rFmR99V5vj3aXza3xdBbXMalubTg/jIv5dfAi54Pdc75j4z412n3Npj3Ld/ENm7a3b/Cod6h/ret1/5vn/C+l+gdslMvgPSLJ8d8q+U66fevYn/tW1chleEtNTGlcHCbLRlq0tHzF5tsbbZZfHjjLgZu42XCuC3NrdjTasZGNzgxPIrGqp7r3p7L2p5XjnpPSmTd5XtzqnB6U87zzg1Ol0zd0zsLszxR6lkxp35u6/teL0L0W922cR7Lu1lpL9CsHirzuM2T+BgsyViT6LHcm0/Vr6U/7LGGyJeqTEjt0PHWhF5mCT7R9mtlDwriYv0Tyr/OxYt6qp5r0mPVT0608TqnqMZaarU2nFwrTzzlrs1ed7z1ux60wyr4ydCaTi3enW8x68x0zU7tXSlcmPSW1mGpWJMg4zmPC2lK96tp0OE80y4MfEvnZj8zGluR6b22ki1Ou9V2nCd9xovcPvcYMZYy0lvN60ScZ45vN6yeCeeXFb1lVjnnCar5fwXwE2bzJ4HI1XVPXfXZMm44GUsMpYsmLB65TuVdm0cl0b+i/wGNN66XjeV7zuPpHcnK/juhhjdfId5jMdE5nN0dGmmm2zZs2cexD5n9p/dY352XsvXHaZNWWsmmS1atjR452nYudzvqv2HMRyvNNnlMcDl3R2+yx2uVrBubTW9icHDVtbNXlZm7jma1rM4VurZZd2y6nUau7ZXZ7bVU+mnoOVxZGMrVmvX60605JwmzGZhhhjTWtaaaMaaGTGmNMZasY0iX8VMUl8eepaIrzGSpemWOQyZORk2bNpjUybMmxqYmknCGCFynutfksaZpjTNMaaatM0xsxcGR0sociNqxNSmhhR1ZJPbsn8qyF0t2qH6iYBclclalbtTTcHTDsPaX6rlnElph2Jyumumtynv2Kk8GI7rsvXbIcJgHJOSaSXnnGaI3m87RtVXJOZ/YtgdTE6Wpha6ZlE8ayXkef1fh602r2WwvfMXtMdLlkfnLFdYYwYso+bWqm7yJqHXZGw2nrS5ZanSYnWlxBxMF1V940K2wdrI7R6OYf7DGGamMmTSbRhlS45xmVOumF1EyPCmHrrN8wwZOOrdNtLeMtzFzDlWnfTBxMk2NaXIZHBYxYLD4w8yju0ao65Vz1OIXoS9dLanwCe1PWrYuWMqf1if1z2k2yYfKJ741PDgno1ZQ8DRqvUny3mNoWTzGO6m1DkrJI8JiR5cSd+vZdGOO8nrMoc5+NDUFsMSXaZJeNlMmGLtJsovOsUp7I9S5VojKxF6bTVEelXqlfJobQr3LozSh2Jk7VcrVMfhXqszGWMzNqGhqZY0OadxkyyMssKugZR0KNFXBHlqwmJgTE/BNVMk6ItJXZMR0H47GpXv/DMOvNkmVuaV1PRfEdxuqc7Hcd+ZV/zTLaRxWk0nl9CdCeM6mn5rstHIBcpiuwmUZXeq81DacHI2rmrZ5SuE5mOZd6LQrZg9mx32TprA8BMo5jKN6yLTCi3WzQaZSuhzTtM1fUTGVpG8Tw+KXI0tjEpiWxtLYynOlktSbVlaI5kxP8TDH8kx50xoxi5KcA4pcja8KWLRlO/Ks6q06ergnvm1ca3Tq8Uw7LTUsmWyctXPWmpitl/uvGcWTGXGuAXDfhqazGmjkxcJW5hMMMMpYsXl2TZYtVOddG3XCarUt6Ptq9CZXSNzyuRzqRZOjsxdBbFVz6OA5HI43r1jityVlVpVkxmOsyaYWE1NTGq1sOVh36mHMcxtSvcy70edG0ZGR3I1Go1GRlV7mWWo1G0ZGRqlvH40l7o4m5xMWLLLYyNjnqc8556mdPqLJ31n/1nWOncxzG1tizrHs/Z+d2vP/B/l8wdJ6rHUn2nbbDq4p6htFtYzMMMTaZis1K5GKzGNmxhmUx2DDlZ/qNnIx41xnaMfCZWYaZWtNLTNW8ND4Fw1MyZOCdM428suKG1ehW8TesOydg7J+YYcD4cYR+8dFK6M4E3HM9ZfRNNL+Sn6rsl4DsrDl2HpPCnfxjGXtbZtYys1ttlyJ4T+BvexjGWRjMszK4Jpc77D3GyuVD7q0+G8m9G+2+rGm7cOR2y7FdtY2XUYx/oNlfRYxhMYyYZkyyg55enna9Kt/FFi6GMMwYwdwxWgxGMLKYmUyGExTKMZkMFhkymKuh0NOBNnBu+23LdwDoZYYzGGMxtORaTU1pjTGWTTGGtMrNWUsyyTTLLG1qy2ZjbK2DBllWqxMtBMaYZQmcE7zvvRcTkclUwdkxTaSdyySt/7fpL+T1v516Ji97fwr5JbLu305zMn5+GMTTZ9F+y7ExwmGVfG44yxn3dLv6l5i+Wth1jCrDq21nW9LqvvDzz3Vf3LLH/O/32TJ/erx3bXftO4eF+G956D952K/An4NfvOpjFjExjevP/UmE0fIoZXx6/w6lX/no3D0bLt+ixjieBM6ksRd0yB4Lt2SwYNE+gd1detlZWUnpiZfGfFaK+4PyCa/v18V8X75pe9fLXzp7l3VjF76vWZmHwGz1IZNWT7b8yddJ4q5kyrVdfru6atWc7bVYztL9Jf4GXvT+Y8m9/YsXP6H018a8D4XVOqvfzqeR+6yZOD8dPv0+U7/q5Pl+2dNb0MjzGVH5p6MNQ7cOWvw62U9aHE8DprDek+McLyvDz+te+9Zhq5+YTruufMcWMabqysTmZVWjKPfnK0wyVcrsuhjZRdLkHNvD72b9abriOSGIxiLixMOoalNPXzy+wT/tf+U6HHONfsz+xe8ufHBdQWWGWLA9if0rsnmrxK5LvRZQeWsTCsrmOYy8VteVfuRfcVTtDLItLIsMYxZLdU/DbtSemxF6Z6Zo5WBXE4tFdCyVMMXMTEMZXVlS6Xec2T4e0tHsRcEuWshcJ2YsNF5rUx1E8ifCq6Z+ZP7qdCeu/aTwFd53l16/o0NOw6O3dLavP4Hbi4RdmuDk6DoYaninC0+o4uZjbJ7Rxeu0/FbuFg+q7DVS6fQe0rZ6NDGUNNU6DEqOaLTicKnYZMnBWruljQxoaS3dZhocDge0bSTyOvdAbG5hxe2xji7E/L55xX13wWNDi6HCekcFxfCPGxY0MXC+s7afWaMdDyjyr+o8Rudm/NabOZvdl274zH4f5XK9z6On1Pe/K5TdPAslg77BjuO6Y3eO7GqvOPG/stknp1leyvLL0Z7bl9I4noMvLkzytLhWYzrOZzLXCORe028rORzOg4N/L0HlMOQ3Pgmnbb6KczlabORpu980q37TBqRu0/p3PO6234Bl03Ynuz+9W7gnsEcmvYaYY3aMYY0wx3pYd+ujsXauWdaY5Xkbtl23fPzFHiDB/QMo0yFjBllYxTQYYyxkrwn7JufwJ/PfgJ+C83X69ni6zvXcnyXabv0ncbLwsceS+RNlyN2mnneJtX0ngYO0+e+0+UnA+Wch3ji8hj5an4h+i6XBySU4n+R0roVcbw5yvHrmr4Yw8Y7x6c+9POPYHI5HI5HI5HI5HGXGww4nE4nrVyOR8XeqPEO7PLOiukYa3Novk5hV4cdtYZLI93e+uxff2jRo0aNGjRo0aNG1bVtW1dy3m83m8+tQ5ZzHw3nObwOu8La9Rc1dtkdS8A3eTk823tnktXWlxN6Oixe06zrN70Isd9jiOgZFq9yfkPqP/SLhN2Myl8jDM43bl1nbcb4cO57jlh8Jow6pzXZdL4dyODTuuhu77FyO27DdwdRxmvO+O+3N2+BdqyTwLHVczDVY4UPE4O66/ZO2cx1LFzVdSXtF7G4HMbrauOHRw6c8FdZ5m9fHZHYZXfTlZquyynSyTTKke6vcffSD9pzPA/G7n7jxPmuhc1DHMynPMrGL6AdewYmwu5ko+UUyTwrMv27rPH1v1nGqd87+p6N6LU8k3NEng53xXyHS97+44OSg/sy/hn+Se6yfYNjW0/uTgP+PvWYzLMmjhcLB/gGpri6H83/84eUXWT6T9Hsv7785z/7z4icpW+zfXypuR7rx/gMdZb1/wC678pcs8/2a3mDitGHxl9mfPlll5MafWWqxk/eYuTDgcNMzDGWLWvsuglNxs53GtN6uWpktlW1tZZYcuinMMWmnNnJydze3b2Y1McBxrBkXw799izLMZZYyy0TkbsGM4p03S2uVu5s/XXUdSdec6smVxZYYGpVmT8A+8ajuEyV5FatkvVru2x6uxGXXbH4A+jvgP4GMYy3iPLXzq/6z65+E005ey+cwMZD3fZcqc6xpjTFjQ0P3U+e++cPYmTIwj0nrK5NPTfl3WvpfLtXDcb2HQMudYOxFXQBor4L4T6vrOauFctYXJQ++NUWmJe5bmx1jDiZS1dTqWxo4GR8jm3fttpmPHppk9PEyv4/y8/sO07XacOmcqc0x2Vi9BvNJvN5oW8x4mOsydpidRxMYJPx06m1bqPzq9KtK8sxXNXFodD/+MYYaJTLwOhc9brCsV18oOR1i4tXChyTkq4lf4y1Ke+9axjDHqs1mfBbMXuP4Hzi+X7t8vzv7bHerrUPgPCxhjre4fXdfLNtNM+Jd+Zdh8xd8wP87uNPoPgv4W7/5P2BuxfsMabNnMnza+54Pdi5U671GPZY8CehX8Voeoo7FHpkeEc6715FwHZrIrUrHaviPUbPZHND+IhczrP6FcYvhOZ0Di/ETt0OI+YwNWR9r7tpf6WDeZKZDB1+z2IthOl1mPyb5FluvEx9h9d0NnM0Y1XPFkWIsk1WotJ0PBMmkvjvQTd0e71tfeV+8r8lQ/tpzpsmxJ+InrI/dj2UajUajVTUajatRqNRtGo1Go1Go4wjeMpZFMVV9CHbofPraLsJ3JpWV2XOoanCuFky4y3PPNxucK2uKC1Lbdb1eo+m5XomN6HfeZsabHLHRX/K+offtNGGmHWctcVcG44MdSqsOLY9VzX+Zxfxn2HPdWTpzWvkrtJ8M5zorrKcquRytJ5N5DZmcaW02l76nWO+BqPXm1A2Ry/0q71dH/mqrqeFjkYxjEXtsX8qubTk67rGycyqsdm4tZx5D6D5hhi0waaWmiaMP81Yjii5qxPlPuU/GfTL1Y5E6Jyfiq63qTa39A4J0sOGDgO9WF9bOXl0XfPRbsY2bPNKPy1YrFYrFYmRhhlTIyMjJWJYZHXuCXI8OoXsvfljGLFicNifpp2XunoPiG1wtx3p1Tah+/DD66OnVtVXP9rKbVxOnL0tR/rHtqB5UDErUVcl11D4qqvjpOcxX7armUNJB3LpW6bxVvD08e8h3odKKvyCFZBdSh2FVcST9xV3n3T8t1j7Kr9qgrqXg+13Pt5U7JCvFXVIV1YG5lRhkVYZJYYDDD4KOIMoHCp26WS8GB7uBh2zIdgq/PKyInjV2STShuoapUdCpX1yTwqq/z1VvET7Kh5nVPkO8YyxjLt2MaaMmWTLQvx3qnzltnXW0p2jxgbEtSny/Osv8Y9pLMXYoHVPAhkVdWVeODhR6q9/Sxe2liwwZWMVvFXfRkeIDxAePUPIrdJ4ey6yquzH+PD/bUOWAu05qVHtFd8rrKHSoeNIOUqrYr3FXyToqfYJgwmJdKpXXOwYYegNNGMzfZPp/t3t/DVs4zjNTN61rRqaWaa4NYbRjTa0tWwy2Y2tGN8ZO8ofNKq4j9SL7I+cSm4/6ovLV5HNXLI0jJidwrtk6ynCaP6Z++GjRlWS3tLeW129Mi9evxU9mtz6s5J3Z7M2ngTgnKvmpomxpaLCzPfmx0JWE+m3NLDDGOX47RctdYYNK5jakdqLkRlI39n590T5zctGSwwZZDJj6kW8XSi6ot2MmWWJ0DUT3nuvebBudScjZ79g8cWJ8av0k+/bE5WKd5MdbFpbDVMxu1DVMmtNZGJvq1mtRbn6M+g/kP0FwDwr7quZs7xosNGpbscyxhhd9TyJyFwbLcxlTasg75vW7TsV5K7ji44XPMMrdoj+Y3rT0Hie62nlYV/pwczzOmdLqLhYkzGMzCZWGMQzGMSsZYY6Di1t4nlJ+Em63mJxrVLxPbYxNEdgc1dU2iOKyoYYWjNrEeHTYybVk0atSa7ehuwsWMWTqn1TrnS6hYsi71d1+s+k+ic70e20fzE/VaTdxT9ZtU4GIXdeNx3X77guYYfpHeTQjaMX6brOu4OY4K7Y2d9mbHarI5ox3p4GpJ2Vd/Tst60f7j999pppjR+Q/Qf8J/VaORs3cji7FfFuN61+ui9s8hix1OCh5KGVV23BPXvZfz3CLyHpix+exi8z/KnCnosY2eunor+cxyPO/xJ0vKey9OvE9VjqaYu0x3Z3jd6o2b1T12D+F8l232lwaaacD5LE8LBxu7WTlbWraWpew8Xexjel3E+wWD4APITdNqR8F3R3T0lunCQ4GaE9R37DxeCYfcHi4xci5ovKfxVs55y2hf+65E/Xdp6jR5nrebTmi5incpkyOjs50JvrZwstbbW6kfuuQw+2mykf/EXNFzxfKTrxew929TR6bWnGL//F3JFOFCQT3K4lQ"
28
+
29
+ kernels = Kernel(
30
+ bz2.decompress(base64.b64decode(quantization_code)),
31
+ [
32
+ "int4WeightCompression",
33
+ "int4WeightExtractionFloat",
34
+ "int4WeightExtractionHalf",
35
+ "int8WeightExtractionFloat",
36
+ "int8WeightExtractionHalf",
37
+ ],
38
+ )
39
+ except Exception as exception:
40
+ kernels = None
41
+ logger.warning("Failed to load cpm_kernels:" + str(exception))
42
+
43
+
44
+ class W8A16Linear(torch.autograd.Function):
45
+ @staticmethod
46
+ def forward(ctx, inp: torch.Tensor, quant_w: torch.Tensor, scale_w: torch.Tensor, weight_bit_width):
47
+ ctx.inp_shape = inp.size()
48
+ ctx.weight_bit_width = weight_bit_width
49
+ out_features = quant_w.size(0)
50
+ inp = inp.contiguous().view(-1, inp.size(-1))
51
+ weight = extract_weight_to_half(quant_w, scale_w, weight_bit_width)
52
+ ctx.weight_shape = weight.size()
53
+ output = inp.mm(weight.t())
54
+ ctx.save_for_backward(inp, quant_w, scale_w)
55
+ return output.view(*(ctx.inp_shape[:-1] + (out_features,)))
56
+
57
+ @staticmethod
58
+ def backward(ctx, grad_output: torch.Tensor):
59
+ inp, quant_w, scale_w = ctx.saved_tensors
60
+ weight = extract_weight_to_half(quant_w, scale_w, ctx.weight_bit_width)
61
+ grad_output = grad_output.contiguous().view(-1, weight.size(0))
62
+ grad_input = grad_output.mm(weight)
63
+ grad_weight = grad_output.t().mm(inp)
64
+ return grad_input.view(ctx.inp_shape), grad_weight.view(ctx.weight_shape), None, None
65
+
66
+
67
+ def compress_int4_weight(weight: torch.Tensor): # (n, m)
68
+ with torch.cuda.device(weight.device):
69
+ n, m = weight.size(0), weight.size(1)
70
+ assert m % 2 == 0
71
+ m = m // 2
72
+ out = torch.empty(n, m, dtype=torch.int8, device="cuda")
73
+ stream = torch.cuda.current_stream()
74
+
75
+ gridDim = (n, 1, 1)
76
+ blockDim = (min(round_up(m, 32), 1024), 1, 1)
77
+
78
+ kernels.int4WeightCompression(
79
+ gridDim,
80
+ blockDim,
81
+ 0,
82
+ stream,
83
+ [ctypes.c_void_p(weight.data_ptr()), ctypes.c_void_p(out.data_ptr()), ctypes.c_int32(n), ctypes.c_int32(m)],
84
+ )
85
+ return out
86
+
87
+
88
+ def extract_weight_to_half(weight: torch.Tensor, scale_list: torch.Tensor, source_bit_width: int):
89
+ if source_bit_width == 8:
90
+ func = kernels.int8WeightExtractionHalf
91
+ elif source_bit_width == 4:
92
+ func = kernels.int4WeightExtractionHalf
93
+ else:
94
+ assert False, "Unsupported bit-width"
95
+
96
+ with torch.cuda.device(weight.device):
97
+ n, m = weight.size(0), weight.size(1)
98
+ out = torch.empty(n, m * (8 // source_bit_width), dtype=torch.half, device="cuda")
99
+ stream = torch.cuda.current_stream()
100
+
101
+ gridDim = (n, 1, 1)
102
+ blockDim = (min(round_up(m, 32), 1024), 1, 1)
103
+
104
+ func(
105
+ gridDim,
106
+ blockDim,
107
+ 0,
108
+ stream,
109
+ [
110
+ ctypes.c_void_p(weight.data_ptr()),
111
+ ctypes.c_void_p(scale_list.data_ptr()),
112
+ ctypes.c_void_p(out.data_ptr()),
113
+ ctypes.c_int32(n),
114
+ ctypes.c_int32(m),
115
+ ],
116
+ )
117
+ return out
118
+
119
+
120
+ class QuantizedLinear(Linear):
121
+ def __init__(self, weight_bit_width: int, weight_tensor=None, bias_tensor=None, empty_init=False, *args, **kwargs):
122
+ super(QuantizedLinear, self).__init__(*args, **kwargs)
123
+ self.weight_bit_width = weight_bit_width
124
+
125
+ shape = self.weight.shape
126
+ del self.weight
127
+
128
+ if weight_tensor is None or empty_init:
129
+ self.weight = torch.empty(
130
+ shape[0], shape[1] * weight_bit_width // 8, dtype=torch.int8, device=kwargs["device"]
131
+ )
132
+ self.weight_scale = torch.empty(shape[0], dtype=kwargs["dtype"], device=kwargs["device"])
133
+ else:
134
+ self.weight_scale = (weight_tensor.abs().max(dim=-1).values / ((2 ** (weight_bit_width - 1)) - 1)).half()
135
+ self.weight = torch.round(weight_tensor / self.weight_scale[:, None]).to(torch.int8)
136
+ if weight_bit_width == 4:
137
+ self.weight = compress_int4_weight(self.weight)
138
+
139
+ self.weight = Parameter(self.weight.to(kwargs["device"]), requires_grad=False)
140
+ self.weight_scale = Parameter(self.weight_scale.to(kwargs["device"]), requires_grad=False)
141
+ if bias_tensor is not None:
142
+ self.bias = Parameter(bias_tensor.to(kwargs["device"]), requires_grad=False)
143
+ else:
144
+ self.bias = None
145
+
146
+ def forward(self, input):
147
+ output = W8A16Linear.apply(input, self.weight, self.weight_scale, self.weight_bit_width)
148
+ if self.bias is not None:
149
+ output = output + self.bias
150
+ return output
151
+
152
+
153
+ def quantize(model, weight_bit_width, empty_init=False, **kwargs):
154
+ """Replace fp16 linear with quantized linear"""
155
+
156
+ for layer in model.layers:
157
+ layer.attention.query_key_value = QuantizedLinear(
158
+ weight_bit_width=weight_bit_width,
159
+ weight_tensor=layer.attention.query_key_value.weight.to(torch.cuda.current_device()),
160
+ bias_tensor=layer.attention.query_key_value.bias,
161
+ in_features=layer.attention.query_key_value.in_features,
162
+ out_features=layer.attention.query_key_value.out_features,
163
+ bias=True,
164
+ dtype=torch.half,
165
+ device=layer.attention.query_key_value.weight.device,
166
+ empty_init=empty_init
167
+ )
168
+ layer.attention.dense = QuantizedLinear(
169
+ weight_bit_width=weight_bit_width,
170
+ weight_tensor=layer.attention.dense.weight.to(torch.cuda.current_device()),
171
+ bias_tensor=layer.attention.dense.bias,
172
+ in_features=layer.attention.dense.in_features,
173
+ out_features=layer.attention.dense.out_features,
174
+ bias=True,
175
+ dtype=torch.half,
176
+ device=layer.attention.dense.weight.device,
177
+ empty_init=empty_init
178
+ )
179
+ layer.mlp.dense_h_to_4h = QuantizedLinear(
180
+ weight_bit_width=weight_bit_width,
181
+ weight_tensor=layer.mlp.dense_h_to_4h.weight.to(torch.cuda.current_device()),
182
+ bias_tensor=layer.mlp.dense_h_to_4h.bias,
183
+ in_features=layer.mlp.dense_h_to_4h.in_features,
184
+ out_features=layer.mlp.dense_h_to_4h.out_features,
185
+ bias=True,
186
+ dtype=torch.half,
187
+ device=layer.mlp.dense_h_to_4h.weight.device,
188
+ empty_init=empty_init
189
+ )
190
+ layer.mlp.dense_4h_to_h = QuantizedLinear(
191
+ weight_bit_width=weight_bit_width,
192
+ weight_tensor=layer.mlp.dense_4h_to_h.weight.to(torch.cuda.current_device()),
193
+ bias_tensor=layer.mlp.dense_4h_to_h.bias,
194
+ in_features=layer.mlp.dense_4h_to_h.in_features,
195
+ out_features=layer.mlp.dense_4h_to_h.out_features,
196
+ bias=True,
197
+ dtype=torch.half,
198
+ device=layer.mlp.dense_4h_to_h.weight.device,
199
+ empty_init=empty_init
200
+ )
201
+ return model
checkpoint-2000/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e75c96f06b249e57a701db73ce821398e69672027a86d3a44063830602a29ab4
3
+ size 14583
checkpoint-2000/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6dae7f45b6bac644ac207a61f43cba6d4b919a4cac22022bbb02907914422f5d
3
+ size 14583
checkpoint-2000/special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<sop>",
3
+ "eos_token": "<eop>",
4
+ "mask_token": "[MASK]",
5
+ "pad_token": "<pad>",
6
+ "unk_token": "<unk>"
7
+ }
checkpoint-2000/tokenization_chatglm.py ADDED
@@ -0,0 +1,443 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Tokenization classes for ChatGLM."""
2
+ from typing import List, Optional, Union
3
+ import os
4
+
5
+ from transformers.tokenization_utils import PreTrainedTokenizer
6
+ from transformers.utils import logging, PaddingStrategy
7
+ from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
8
+ from typing import Dict
9
+ import sentencepiece as spm
10
+ import numpy as np
11
+
12
+ logger = logging.get_logger(__name__)
13
+
14
+ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
15
+ "THUDM/chatglm-6b": 2048,
16
+ }
17
+
18
+
19
+ class TextTokenizer:
20
+ def __init__(self, model_path):
21
+ self.sp = spm.SentencePieceProcessor()
22
+ self.sp.Load(model_path)
23
+ self.num_tokens = self.sp.vocab_size()
24
+
25
+ def encode(self, text):
26
+ return self.sp.EncodeAsIds(text)
27
+
28
+ def decode(self, ids: List[int]):
29
+ return self.sp.DecodeIds(ids)
30
+
31
+ def tokenize(self, text):
32
+ return self.sp.EncodeAsPieces(text)
33
+
34
+ def convert_tokens_to_string(self, tokens):
35
+ return self.sp.DecodePieces(tokens)
36
+
37
+ def convert_tokens_to_ids(self, tokens):
38
+ return [self.sp.PieceToId(token) for token in tokens]
39
+
40
+ def convert_token_to_id(self, token):
41
+ return self.sp.PieceToId(token)
42
+
43
+ def convert_id_to_token(self, idx):
44
+ return self.sp.IdToPiece(idx)
45
+
46
+ def __len__(self):
47
+ return self.num_tokens
48
+
49
+
50
+ class SPTokenizer:
51
+ def __init__(
52
+ self,
53
+ vocab_file,
54
+ num_image_tokens=20000,
55
+ max_blank_length=80,
56
+ byte_fallback=True,
57
+ ):
58
+ assert vocab_file is not None
59
+ self.vocab_file = vocab_file
60
+ self.num_image_tokens = num_image_tokens
61
+ self.special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "<unused_0>", "<sop>", "<eop>", "<ENC>", "<dBLOCK>"]
62
+ self.max_blank_length = max_blank_length
63
+ self.byte_fallback = byte_fallback
64
+ self.text_tokenizer = TextTokenizer(vocab_file)
65
+
66
+ def _get_text_tokenizer(self):
67
+ return self.text_tokenizer
68
+
69
+ @staticmethod
70
+ def get_blank_token(length: int):
71
+ assert length >= 2
72
+ return f"<|blank_{length}|>"
73
+
74
+ @staticmethod
75
+ def get_tab_token():
76
+ return f"<|tab|>"
77
+
78
+ @property
79
+ def num_text_tokens(self):
80
+ return self.text_tokenizer.num_tokens
81
+
82
+ @property
83
+ def num_tokens(self):
84
+ return self.num_image_tokens + self.num_text_tokens
85
+
86
+ @staticmethod
87
+ def _encode_whitespaces(text: str, max_len: int = 80):
88
+ text = text.replace("\t", SPTokenizer.get_tab_token())
89
+ for i in range(max_len, 1, -1):
90
+ text = text.replace(" " * i, SPTokenizer.get_blank_token(i))
91
+ return text
92
+
93
+ def _preprocess(self, text: str, linebreak=True, whitespaces=True):
94
+ if linebreak:
95
+ text = text.replace("\n", "<n>")
96
+ if whitespaces:
97
+ text = self._encode_whitespaces(text, max_len=self.max_blank_length)
98
+ return text
99
+
100
+ def encode(
101
+ self, text: str, linebreak=True, whitespaces=True, add_dummy_prefix=True
102
+ ) -> List[int]:
103
+ """
104
+ @param text: Text to encode.
105
+ @param linebreak: Whether to encode newline (\n) in text.
106
+ @param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding.
107
+ @param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text.
108
+ @param add_dummy_prefix: Whether to add dummy blank space in the beginning.
109
+ """
110
+ text = self._preprocess(text, linebreak, whitespaces)
111
+ if not add_dummy_prefix:
112
+ text = "<n>" + text
113
+ tmp = self._get_text_tokenizer().encode(text)
114
+ tokens = [x + self.num_image_tokens for x in tmp]
115
+ return tokens if add_dummy_prefix else tokens[2:]
116
+
117
+ def postprocess(self, text):
118
+ text = text.replace("<n>", "\n")
119
+ text = text.replace(SPTokenizer.get_tab_token(), "\t")
120
+ for i in range(2, self.max_blank_length + 1):
121
+ text = text.replace(self.get_blank_token(i), " " * i)
122
+ return text
123
+
124
+ def decode(self, text_ids: List[int]) -> str:
125
+ ids = [int(_id) - self.num_image_tokens for _id in text_ids]
126
+ ids = [_id for _id in ids if _id >= 0]
127
+ text = self._get_text_tokenizer().decode(ids)
128
+ text = self.postprocess(text)
129
+ return text
130
+
131
+ def decode_tokens(self, tokens: List[str]) -> str:
132
+ text = self._get_text_tokenizer().convert_tokens_to_string(tokens)
133
+ text = self.postprocess(text)
134
+ return text
135
+
136
+ def tokenize(
137
+ self, text: str, linebreak=True, whitespaces=True, add_dummy_prefix=True
138
+ ) -> List[str]:
139
+ """
140
+ @param text: Text to encode.
141
+ @param linebreak: Whether to encode newline (\n) in text.
142
+ @param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding.
143
+ @param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text.
144
+ @param add_dummy_prefix: Whether to add dummy blank space in the beginning.
145
+ """
146
+ text = self._preprocess(text, linebreak, whitespaces)
147
+ if not add_dummy_prefix:
148
+ text = "<n>" + text
149
+ tokens = self._get_text_tokenizer().tokenize(text)
150
+ return tokens if add_dummy_prefix else tokens[2:]
151
+
152
+ def __getitem__(self, x: Union[int, str]):
153
+ if isinstance(x, int):
154
+ if x < self.num_image_tokens:
155
+ return "<image_{}>".format(x)
156
+ else:
157
+ return self.text_tokenizer.convert_id_to_token(x - self.num_image_tokens)
158
+ elif isinstance(x, str):
159
+ if x.startswith("<image_") and x.endswith(">") and x[7:-1].isdigit():
160
+ return int(x[7:-1])
161
+ else:
162
+ return self.text_tokenizer.convert_token_to_id(x) + self.num_image_tokens
163
+ else:
164
+ raise ValueError("The key should be str or int.")
165
+
166
+
167
+ class ChatGLMTokenizer(PreTrainedTokenizer):
168
+ """
169
+ Construct a ChatGLM tokenizer. Based on byte-level Byte-Pair-Encoding.
170
+
171
+ Args:
172
+ vocab_file (`str`):
173
+ Path to the vocabulary file.
174
+ """
175
+
176
+ vocab_files_names = {"vocab_file": "ice_text.model"}
177
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
178
+ model_input_names = ["input_ids", "attention_mask", "position_ids"]
179
+
180
+ def __init__(
181
+ self,
182
+ vocab_file,
183
+ do_lower_case=False,
184
+ remove_space=False,
185
+ bos_token='<sop>',
186
+ eos_token='<eop>',
187
+ end_token='</s>',
188
+ mask_token='[MASK]',
189
+ gmask_token='[gMASK]',
190
+ padding_side="left",
191
+ pad_token="<pad>",
192
+ unk_token="<unk>",
193
+ num_image_tokens=20000,
194
+ **kwargs
195
+ ) -> None:
196
+ super().__init__(
197
+ do_lower_case=do_lower_case,
198
+ remove_space=remove_space,
199
+ padding_side=padding_side,
200
+ bos_token=bos_token,
201
+ eos_token=eos_token,
202
+ end_token=end_token,
203
+ mask_token=mask_token,
204
+ gmask_token=gmask_token,
205
+ pad_token=pad_token,
206
+ unk_token=unk_token,
207
+ num_image_tokens=num_image_tokens,
208
+ **kwargs
209
+ )
210
+
211
+ self.do_lower_case = do_lower_case
212
+ self.remove_space = remove_space
213
+ self.vocab_file = vocab_file
214
+
215
+ self.bos_token = bos_token
216
+ self.eos_token = eos_token
217
+ self.end_token = end_token
218
+ self.mask_token = mask_token
219
+ self.gmask_token = gmask_token
220
+
221
+ self.sp_tokenizer = SPTokenizer(vocab_file, num_image_tokens=num_image_tokens)
222
+
223
+ """ Initialisation """
224
+
225
+ @property
226
+ def gmask_token_id(self) -> Optional[int]:
227
+ if self.gmask_token is None:
228
+ return None
229
+ return self.convert_tokens_to_ids(self.gmask_token)
230
+
231
+ @property
232
+ def end_token_id(self) -> Optional[int]:
233
+ """
234
+ `Optional[int]`: Id of the end of context token in the vocabulary. Returns `None` if the token has not been
235
+ set.
236
+ """
237
+ if self.end_token is None:
238
+ return None
239
+ return self.convert_tokens_to_ids(self.end_token)
240
+
241
+ @property
242
+ def vocab_size(self):
243
+ """ Returns vocab size """
244
+ return self.sp_tokenizer.num_tokens
245
+
246
+ def get_vocab(self):
247
+ """ Returns vocab as a dict """
248
+ vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
249
+ vocab.update(self.added_tokens_encoder)
250
+ return vocab
251
+
252
+ def preprocess_text(self, inputs):
253
+ if self.remove_space:
254
+ outputs = " ".join(inputs.strip().split())
255
+ else:
256
+ outputs = inputs
257
+
258
+ if self.do_lower_case:
259
+ outputs = outputs.lower()
260
+
261
+ return outputs
262
+
263
+ def _tokenize(self, text, **kwargs):
264
+ """ Returns a tokenized string. """
265
+ text = self.preprocess_text(text)
266
+
267
+ seq = self.sp_tokenizer.tokenize(text)
268
+
269
+ return seq
270
+
271
+ def convert_tokens_to_string(self, tokens: List[str]) -> str:
272
+ return self.sp_tokenizer.decode_tokens(tokens)
273
+
274
+ def _decode(
275
+ self,
276
+ token_ids: Union[int, List[int]],
277
+ **kwargs
278
+ ) -> str:
279
+ if isinstance(token_ids, int):
280
+ token_ids = [token_ids]
281
+ if len(token_ids) == 0:
282
+ return ""
283
+ if self.pad_token_id in token_ids: # remove pad
284
+ token_ids = list(filter((self.pad_token_id).__ne__, token_ids))
285
+ return super()._decode(token_ids, **kwargs)
286
+
287
+ def _convert_token_to_id(self, token):
288
+ """ Converts a token (str) in an id using the vocab. """
289
+ return self.sp_tokenizer[token]
290
+
291
+ def _convert_id_to_token(self, index):
292
+ """Converts an index (integer) in a token (str) using the vocab."""
293
+ return self.sp_tokenizer[index]
294
+
295
+ def save_vocabulary(self, save_directory, filename_prefix=None):
296
+ """
297
+ Save the vocabulary and special tokens file to a directory.
298
+
299
+ Args:
300
+ save_directory (`str`):
301
+ The directory in which to save the vocabulary.
302
+ filename_prefix (`str`, *optional*):
303
+ An optional prefix to add to the named of the saved files.
304
+
305
+ Returns:
306
+ `Tuple(str)`: Paths to the files saved.
307
+ """
308
+ if os.path.isdir(save_directory):
309
+ vocab_file = os.path.join(
310
+ save_directory, self.vocab_files_names["vocab_file"]
311
+ )
312
+ else:
313
+ vocab_file = save_directory
314
+
315
+ with open(self.vocab_file, 'rb') as fin:
316
+ proto_str = fin.read()
317
+
318
+ with open(vocab_file, "wb") as writer:
319
+ writer.write(proto_str)
320
+
321
+ return (vocab_file,)
322
+
323
+ def build_inputs_with_special_tokens(
324
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
325
+ ) -> List[int]:
326
+ """
327
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
328
+ adding special tokens. A BERT sequence has the following format:
329
+
330
+ - single sequence: `[CLS] X [SEP]`
331
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
332
+
333
+ Args:
334
+ token_ids_0 (`List[int]`):
335
+ List of IDs to which the special tokens will be added.
336
+ token_ids_1 (`List[int]`, *optional*):
337
+ Optional second list of IDs for sequence pairs.
338
+
339
+ Returns:
340
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
341
+ """
342
+ gmask_id = self.sp_tokenizer[self.gmask_token]
343
+ eos_id = self.sp_tokenizer[self.eos_token]
344
+ token_ids_0 = token_ids_0 + [gmask_id, self.sp_tokenizer[self.bos_token]]
345
+ if token_ids_1 is not None:
346
+ token_ids_0 = token_ids_0 + token_ids_1 + [eos_id]
347
+ return token_ids_0
348
+
349
+ def _pad(
350
+ self,
351
+ encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
352
+ max_length: Optional[int] = None,
353
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
354
+ pad_to_multiple_of: Optional[int] = None,
355
+ return_attention_mask: Optional[bool] = None,
356
+ ) -> dict:
357
+ """
358
+ Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
359
+
360
+ Args:
361
+ encoded_inputs:
362
+ Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
363
+ max_length: maximum length of the returned list and optionally padding length (see below).
364
+ Will truncate by taking into account the special tokens.
365
+ padding_strategy: PaddingStrategy to use for padding.
366
+
367
+ - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
368
+ - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
369
+ - PaddingStrategy.DO_NOT_PAD: Do not pad
370
+ The tokenizer padding sides are defined in self.padding_side:
371
+
372
+ - 'left': pads on the left of the sequences
373
+ - 'right': pads on the right of the sequences
374
+ pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
375
+ This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
376
+ `>= 7.5` (Volta).
377
+ return_attention_mask:
378
+ (optional) Set to False to avoid returning attention mask (default: set to model specifics)
379
+ """
380
+ # Load from model defaults
381
+ bos_token_id = self.sp_tokenizer[self.bos_token]
382
+ mask_token_id = self.sp_tokenizer[self.mask_token]
383
+ gmask_token_id = self.sp_tokenizer[self.gmask_token]
384
+ assert self.padding_side == "left"
385
+
386
+ required_input = encoded_inputs[self.model_input_names[0]]
387
+ seq_length = len(required_input)
388
+
389
+ if padding_strategy == PaddingStrategy.LONGEST:
390
+ max_length = len(required_input)
391
+
392
+ if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
393
+ max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
394
+
395
+ needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
396
+
397
+ # Initialize attention mask if not present.
398
+ if max_length is not None:
399
+ if "attention_mask" not in encoded_inputs:
400
+ if bos_token_id in required_input:
401
+ context_length = required_input.index(bos_token_id)
402
+ else:
403
+ context_length = seq_length
404
+ attention_mask = np.ones((1, seq_length, seq_length))
405
+ attention_mask = np.tril(attention_mask)
406
+ attention_mask[:, :, :context_length] = 1
407
+ attention_mask = np.bool_(attention_mask < 0.5)
408
+ encoded_inputs["attention_mask"] = attention_mask
409
+
410
+ if "position_ids" not in encoded_inputs:
411
+ if bos_token_id in required_input:
412
+ context_length = required_input.index(bos_token_id)
413
+ else:
414
+ context_length = seq_length
415
+ position_ids = np.arange(seq_length, dtype=np.int64)
416
+ mask_token = mask_token_id if mask_token_id in required_input else gmask_token_id
417
+ if mask_token in required_input:
418
+ mask_position = required_input.index(mask_token)
419
+ position_ids[context_length:] = mask_position
420
+ block_position_ids = np.concatenate(
421
+ [np.zeros(context_length, dtype=np.int64),
422
+ np.arange(1, seq_length - context_length + 1, dtype=np.int64)])
423
+ encoded_inputs["position_ids"] = np.stack([position_ids, block_position_ids], axis=0)
424
+
425
+ if needs_to_be_padded:
426
+ difference = max_length - len(required_input)
427
+
428
+ if "attention_mask" in encoded_inputs:
429
+ encoded_inputs["attention_mask"] = np.pad(encoded_inputs["attention_mask"],
430
+ pad_width=[(0, 0), (difference, 0), (difference, 0)],
431
+ mode='constant', constant_values=True)
432
+ if "token_type_ids" in encoded_inputs:
433
+ encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
434
+ "token_type_ids"
435
+ ]
436
+ if "special_tokens_mask" in encoded_inputs:
437
+ encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
438
+ if "position_ids" in encoded_inputs:
439
+ encoded_inputs["position_ids"] = np.pad(encoded_inputs["position_ids"],
440
+ pad_width=[(0, 0), (difference, 0)])
441
+ encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
442
+
443
+ return encoded_inputs
checkpoint-2000/tokenizer_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoTokenizer": [
4
+ "tokenization_chatglm.ChatGLMTokenizer",
5
+ null
6
+ ]
7
+ },
8
+ "bos_token": "<sop>",
9
+ "do_lower_case": false,
10
+ "end_token": "</s>",
11
+ "eos_token": "<eop>",
12
+ "gmask_token": "[gMASK]",
13
+ "mask_token": "[MASK]",
14
+ "model_max_length": 2048,
15
+ "num_image_tokens": 0,
16
+ "pad_token": "<pad>",
17
+ "padding_side": "left",
18
+ "remove_space": false,
19
+ "special_tokens_map_file": null,
20
+ "tokenizer_class": "ChatGLMTokenizer",
21
+ "unk_token": "<unk>"
22
+ }
checkpoint-2000/trainer_state.json ADDED
@@ -0,0 +1,2416 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.5242463958060288,
5
+ "global_step": 2000,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.0,
12
+ "learning_rate": 9.999e-06,
13
+ "loss": 6.1641,
14
+ "step": 5
15
+ },
16
+ {
17
+ "epoch": 0.0,
18
+ "learning_rate": 9.994000000000001e-06,
19
+ "loss": 5.275,
20
+ "step": 10
21
+ },
22
+ {
23
+ "epoch": 0.0,
24
+ "learning_rate": 9.989e-06,
25
+ "loss": 4.8629,
26
+ "step": 15
27
+ },
28
+ {
29
+ "epoch": 0.01,
30
+ "learning_rate": 9.984e-06,
31
+ "loss": 4.8023,
32
+ "step": 20
33
+ },
34
+ {
35
+ "epoch": 0.01,
36
+ "learning_rate": 9.979e-06,
37
+ "loss": 4.7687,
38
+ "step": 25
39
+ },
40
+ {
41
+ "epoch": 0.01,
42
+ "learning_rate": 9.974e-06,
43
+ "loss": 4.7188,
44
+ "step": 30
45
+ },
46
+ {
47
+ "epoch": 0.01,
48
+ "learning_rate": 9.969e-06,
49
+ "loss": 4.6258,
50
+ "step": 35
51
+ },
52
+ {
53
+ "epoch": 0.01,
54
+ "learning_rate": 9.964e-06,
55
+ "loss": 4.6254,
56
+ "step": 40
57
+ },
58
+ {
59
+ "epoch": 0.01,
60
+ "learning_rate": 9.959e-06,
61
+ "loss": 4.5867,
62
+ "step": 45
63
+ },
64
+ {
65
+ "epoch": 0.01,
66
+ "learning_rate": 9.954e-06,
67
+ "loss": 4.6207,
68
+ "step": 50
69
+ },
70
+ {
71
+ "epoch": 0.01,
72
+ "learning_rate": 9.949e-06,
73
+ "loss": 4.6086,
74
+ "step": 55
75
+ },
76
+ {
77
+ "epoch": 0.02,
78
+ "learning_rate": 9.944e-06,
79
+ "loss": 4.5559,
80
+ "step": 60
81
+ },
82
+ {
83
+ "epoch": 0.02,
84
+ "learning_rate": 9.939000000000001e-06,
85
+ "loss": 4.5836,
86
+ "step": 65
87
+ },
88
+ {
89
+ "epoch": 0.02,
90
+ "learning_rate": 9.934e-06,
91
+ "loss": 4.5121,
92
+ "step": 70
93
+ },
94
+ {
95
+ "epoch": 0.02,
96
+ "learning_rate": 9.929000000000001e-06,
97
+ "loss": 4.5234,
98
+ "step": 75
99
+ },
100
+ {
101
+ "epoch": 0.02,
102
+ "learning_rate": 9.924e-06,
103
+ "loss": 4.4992,
104
+ "step": 80
105
+ },
106
+ {
107
+ "epoch": 0.02,
108
+ "learning_rate": 9.919000000000001e-06,
109
+ "loss": 4.4891,
110
+ "step": 85
111
+ },
112
+ {
113
+ "epoch": 0.02,
114
+ "learning_rate": 9.914e-06,
115
+ "loss": 4.4688,
116
+ "step": 90
117
+ },
118
+ {
119
+ "epoch": 0.02,
120
+ "learning_rate": 9.909000000000001e-06,
121
+ "loss": 4.4836,
122
+ "step": 95
123
+ },
124
+ {
125
+ "epoch": 0.03,
126
+ "learning_rate": 9.904e-06,
127
+ "loss": 4.4363,
128
+ "step": 100
129
+ },
130
+ {
131
+ "epoch": 0.03,
132
+ "learning_rate": 9.899000000000001e-06,
133
+ "loss": 4.4215,
134
+ "step": 105
135
+ },
136
+ {
137
+ "epoch": 0.03,
138
+ "learning_rate": 9.894e-06,
139
+ "loss": 4.4469,
140
+ "step": 110
141
+ },
142
+ {
143
+ "epoch": 0.03,
144
+ "learning_rate": 9.889000000000001e-06,
145
+ "loss": 4.3793,
146
+ "step": 115
147
+ },
148
+ {
149
+ "epoch": 0.03,
150
+ "learning_rate": 9.884e-06,
151
+ "loss": 4.3934,
152
+ "step": 120
153
+ },
154
+ {
155
+ "epoch": 0.03,
156
+ "learning_rate": 9.879000000000001e-06,
157
+ "loss": 4.3309,
158
+ "step": 125
159
+ },
160
+ {
161
+ "epoch": 0.03,
162
+ "learning_rate": 9.874e-06,
163
+ "loss": 4.3875,
164
+ "step": 130
165
+ },
166
+ {
167
+ "epoch": 0.04,
168
+ "learning_rate": 9.869000000000002e-06,
169
+ "loss": 4.4262,
170
+ "step": 135
171
+ },
172
+ {
173
+ "epoch": 0.04,
174
+ "learning_rate": 9.864e-06,
175
+ "loss": 4.4285,
176
+ "step": 140
177
+ },
178
+ {
179
+ "epoch": 0.04,
180
+ "learning_rate": 9.859e-06,
181
+ "loss": 4.3965,
182
+ "step": 145
183
+ },
184
+ {
185
+ "epoch": 0.04,
186
+ "learning_rate": 9.854000000000001e-06,
187
+ "loss": 4.3359,
188
+ "step": 150
189
+ },
190
+ {
191
+ "epoch": 0.04,
192
+ "learning_rate": 9.849e-06,
193
+ "loss": 4.4348,
194
+ "step": 155
195
+ },
196
+ {
197
+ "epoch": 0.04,
198
+ "learning_rate": 9.844000000000001e-06,
199
+ "loss": 4.3152,
200
+ "step": 160
201
+ },
202
+ {
203
+ "epoch": 0.04,
204
+ "learning_rate": 9.839e-06,
205
+ "loss": 4.3402,
206
+ "step": 165
207
+ },
208
+ {
209
+ "epoch": 0.04,
210
+ "learning_rate": 9.834000000000001e-06,
211
+ "loss": 4.316,
212
+ "step": 170
213
+ },
214
+ {
215
+ "epoch": 0.05,
216
+ "learning_rate": 9.829e-06,
217
+ "loss": 4.2969,
218
+ "step": 175
219
+ },
220
+ {
221
+ "epoch": 0.05,
222
+ "learning_rate": 9.824000000000001e-06,
223
+ "loss": 4.2867,
224
+ "step": 180
225
+ },
226
+ {
227
+ "epoch": 0.05,
228
+ "learning_rate": 9.819e-06,
229
+ "loss": 4.3902,
230
+ "step": 185
231
+ },
232
+ {
233
+ "epoch": 0.05,
234
+ "learning_rate": 9.814000000000001e-06,
235
+ "loss": 4.2656,
236
+ "step": 190
237
+ },
238
+ {
239
+ "epoch": 0.05,
240
+ "learning_rate": 9.809e-06,
241
+ "loss": 4.3797,
242
+ "step": 195
243
+ },
244
+ {
245
+ "epoch": 0.05,
246
+ "learning_rate": 9.804000000000001e-06,
247
+ "loss": 4.2863,
248
+ "step": 200
249
+ },
250
+ {
251
+ "epoch": 0.05,
252
+ "learning_rate": 9.799e-06,
253
+ "loss": 4.275,
254
+ "step": 205
255
+ },
256
+ {
257
+ "epoch": 0.06,
258
+ "learning_rate": 9.794000000000001e-06,
259
+ "loss": 4.2891,
260
+ "step": 210
261
+ },
262
+ {
263
+ "epoch": 0.06,
264
+ "learning_rate": 9.789e-06,
265
+ "loss": 4.3059,
266
+ "step": 215
267
+ },
268
+ {
269
+ "epoch": 0.06,
270
+ "learning_rate": 9.784000000000002e-06,
271
+ "loss": 4.3832,
272
+ "step": 220
273
+ },
274
+ {
275
+ "epoch": 0.06,
276
+ "learning_rate": 9.779e-06,
277
+ "loss": 4.3055,
278
+ "step": 225
279
+ },
280
+ {
281
+ "epoch": 0.06,
282
+ "learning_rate": 9.774000000000002e-06,
283
+ "loss": 4.3008,
284
+ "step": 230
285
+ },
286
+ {
287
+ "epoch": 0.06,
288
+ "learning_rate": 9.769e-06,
289
+ "loss": 4.25,
290
+ "step": 235
291
+ },
292
+ {
293
+ "epoch": 0.06,
294
+ "learning_rate": 9.764000000000002e-06,
295
+ "loss": 4.2676,
296
+ "step": 240
297
+ },
298
+ {
299
+ "epoch": 0.06,
300
+ "learning_rate": 9.759000000000001e-06,
301
+ "loss": 4.2422,
302
+ "step": 245
303
+ },
304
+ {
305
+ "epoch": 0.07,
306
+ "learning_rate": 9.754000000000002e-06,
307
+ "loss": 4.3137,
308
+ "step": 250
309
+ },
310
+ {
311
+ "epoch": 0.07,
312
+ "learning_rate": 9.749000000000001e-06,
313
+ "loss": 4.2555,
314
+ "step": 255
315
+ },
316
+ {
317
+ "epoch": 0.07,
318
+ "learning_rate": 9.744000000000002e-06,
319
+ "loss": 4.2637,
320
+ "step": 260
321
+ },
322
+ {
323
+ "epoch": 0.07,
324
+ "learning_rate": 9.739000000000001e-06,
325
+ "loss": 4.2996,
326
+ "step": 265
327
+ },
328
+ {
329
+ "epoch": 0.07,
330
+ "learning_rate": 9.734000000000002e-06,
331
+ "loss": 4.3176,
332
+ "step": 270
333
+ },
334
+ {
335
+ "epoch": 0.07,
336
+ "learning_rate": 9.729000000000001e-06,
337
+ "loss": 4.252,
338
+ "step": 275
339
+ },
340
+ {
341
+ "epoch": 0.07,
342
+ "learning_rate": 9.724e-06,
343
+ "loss": 4.266,
344
+ "step": 280
345
+ },
346
+ {
347
+ "epoch": 0.07,
348
+ "learning_rate": 9.719000000000001e-06,
349
+ "loss": 4.1748,
350
+ "step": 285
351
+ },
352
+ {
353
+ "epoch": 0.08,
354
+ "learning_rate": 9.714e-06,
355
+ "loss": 4.3008,
356
+ "step": 290
357
+ },
358
+ {
359
+ "epoch": 0.08,
360
+ "learning_rate": 9.709000000000001e-06,
361
+ "loss": 4.268,
362
+ "step": 295
363
+ },
364
+ {
365
+ "epoch": 0.08,
366
+ "learning_rate": 9.704e-06,
367
+ "loss": 4.2523,
368
+ "step": 300
369
+ },
370
+ {
371
+ "epoch": 0.08,
372
+ "learning_rate": 9.699e-06,
373
+ "loss": 4.3445,
374
+ "step": 305
375
+ },
376
+ {
377
+ "epoch": 0.08,
378
+ "learning_rate": 9.694e-06,
379
+ "loss": 4.298,
380
+ "step": 310
381
+ },
382
+ {
383
+ "epoch": 0.08,
384
+ "learning_rate": 9.689e-06,
385
+ "loss": 4.2809,
386
+ "step": 315
387
+ },
388
+ {
389
+ "epoch": 0.08,
390
+ "learning_rate": 9.684e-06,
391
+ "loss": 4.2234,
392
+ "step": 320
393
+ },
394
+ {
395
+ "epoch": 0.09,
396
+ "learning_rate": 9.679e-06,
397
+ "loss": 4.227,
398
+ "step": 325
399
+ },
400
+ {
401
+ "epoch": 0.09,
402
+ "learning_rate": 9.674000000000001e-06,
403
+ "loss": 4.2605,
404
+ "step": 330
405
+ },
406
+ {
407
+ "epoch": 0.09,
408
+ "learning_rate": 9.669e-06,
409
+ "loss": 4.2268,
410
+ "step": 335
411
+ },
412
+ {
413
+ "epoch": 0.09,
414
+ "learning_rate": 9.664000000000001e-06,
415
+ "loss": 4.1734,
416
+ "step": 340
417
+ },
418
+ {
419
+ "epoch": 0.09,
420
+ "learning_rate": 9.659e-06,
421
+ "loss": 4.2355,
422
+ "step": 345
423
+ },
424
+ {
425
+ "epoch": 0.09,
426
+ "learning_rate": 9.654000000000001e-06,
427
+ "loss": 4.2123,
428
+ "step": 350
429
+ },
430
+ {
431
+ "epoch": 0.09,
432
+ "learning_rate": 9.649e-06,
433
+ "loss": 4.1396,
434
+ "step": 355
435
+ },
436
+ {
437
+ "epoch": 0.09,
438
+ "learning_rate": 9.644000000000001e-06,
439
+ "loss": 4.1869,
440
+ "step": 360
441
+ },
442
+ {
443
+ "epoch": 0.1,
444
+ "learning_rate": 9.639e-06,
445
+ "loss": 4.2148,
446
+ "step": 365
447
+ },
448
+ {
449
+ "epoch": 0.1,
450
+ "learning_rate": 9.634000000000001e-06,
451
+ "loss": 4.1201,
452
+ "step": 370
453
+ },
454
+ {
455
+ "epoch": 0.1,
456
+ "learning_rate": 9.629e-06,
457
+ "loss": 4.1891,
458
+ "step": 375
459
+ },
460
+ {
461
+ "epoch": 0.1,
462
+ "learning_rate": 9.624000000000001e-06,
463
+ "loss": 4.118,
464
+ "step": 380
465
+ },
466
+ {
467
+ "epoch": 0.1,
468
+ "learning_rate": 9.619e-06,
469
+ "loss": 4.1359,
470
+ "step": 385
471
+ },
472
+ {
473
+ "epoch": 0.1,
474
+ "learning_rate": 9.614000000000001e-06,
475
+ "loss": 4.1469,
476
+ "step": 390
477
+ },
478
+ {
479
+ "epoch": 0.1,
480
+ "learning_rate": 9.609e-06,
481
+ "loss": 4.1941,
482
+ "step": 395
483
+ },
484
+ {
485
+ "epoch": 0.1,
486
+ "learning_rate": 9.604000000000002e-06,
487
+ "loss": 4.1219,
488
+ "step": 400
489
+ },
490
+ {
491
+ "epoch": 0.11,
492
+ "learning_rate": 9.599e-06,
493
+ "loss": 4.0951,
494
+ "step": 405
495
+ },
496
+ {
497
+ "epoch": 0.11,
498
+ "learning_rate": 9.594000000000002e-06,
499
+ "loss": 4.1387,
500
+ "step": 410
501
+ },
502
+ {
503
+ "epoch": 0.11,
504
+ "learning_rate": 9.589000000000001e-06,
505
+ "loss": 4.0973,
506
+ "step": 415
507
+ },
508
+ {
509
+ "epoch": 0.11,
510
+ "learning_rate": 9.584000000000002e-06,
511
+ "loss": 4.1551,
512
+ "step": 420
513
+ },
514
+ {
515
+ "epoch": 0.11,
516
+ "learning_rate": 9.579000000000001e-06,
517
+ "loss": 4.1883,
518
+ "step": 425
519
+ },
520
+ {
521
+ "epoch": 0.11,
522
+ "learning_rate": 9.574000000000002e-06,
523
+ "loss": 4.2137,
524
+ "step": 430
525
+ },
526
+ {
527
+ "epoch": 0.11,
528
+ "learning_rate": 9.569000000000001e-06,
529
+ "loss": 4.1748,
530
+ "step": 435
531
+ },
532
+ {
533
+ "epoch": 0.12,
534
+ "learning_rate": 9.564e-06,
535
+ "loss": 4.1664,
536
+ "step": 440
537
+ },
538
+ {
539
+ "epoch": 0.12,
540
+ "learning_rate": 9.559000000000001e-06,
541
+ "loss": 4.0812,
542
+ "step": 445
543
+ },
544
+ {
545
+ "epoch": 0.12,
546
+ "learning_rate": 9.554e-06,
547
+ "loss": 4.2215,
548
+ "step": 450
549
+ },
550
+ {
551
+ "epoch": 0.12,
552
+ "learning_rate": 9.549000000000001e-06,
553
+ "loss": 4.175,
554
+ "step": 455
555
+ },
556
+ {
557
+ "epoch": 0.12,
558
+ "learning_rate": 9.544e-06,
559
+ "loss": 4.0766,
560
+ "step": 460
561
+ },
562
+ {
563
+ "epoch": 0.12,
564
+ "learning_rate": 9.539e-06,
565
+ "loss": 4.0873,
566
+ "step": 465
567
+ },
568
+ {
569
+ "epoch": 0.12,
570
+ "learning_rate": 9.534e-06,
571
+ "loss": 4.1316,
572
+ "step": 470
573
+ },
574
+ {
575
+ "epoch": 0.12,
576
+ "learning_rate": 9.529e-06,
577
+ "loss": 4.108,
578
+ "step": 475
579
+ },
580
+ {
581
+ "epoch": 0.13,
582
+ "learning_rate": 9.524e-06,
583
+ "loss": 4.1691,
584
+ "step": 480
585
+ },
586
+ {
587
+ "epoch": 0.13,
588
+ "learning_rate": 9.519e-06,
589
+ "loss": 4.1154,
590
+ "step": 485
591
+ },
592
+ {
593
+ "epoch": 0.13,
594
+ "learning_rate": 9.514e-06,
595
+ "loss": 4.1035,
596
+ "step": 490
597
+ },
598
+ {
599
+ "epoch": 0.13,
600
+ "learning_rate": 9.509e-06,
601
+ "loss": 4.1293,
602
+ "step": 495
603
+ },
604
+ {
605
+ "epoch": 0.13,
606
+ "learning_rate": 9.504e-06,
607
+ "loss": 4.1734,
608
+ "step": 500
609
+ },
610
+ {
611
+ "epoch": 0.13,
612
+ "learning_rate": 9.499e-06,
613
+ "loss": 4.0504,
614
+ "step": 505
615
+ },
616
+ {
617
+ "epoch": 0.13,
618
+ "learning_rate": 9.494000000000001e-06,
619
+ "loss": 4.048,
620
+ "step": 510
621
+ },
622
+ {
623
+ "epoch": 0.13,
624
+ "learning_rate": 9.489e-06,
625
+ "loss": 4.1066,
626
+ "step": 515
627
+ },
628
+ {
629
+ "epoch": 0.14,
630
+ "learning_rate": 9.484000000000001e-06,
631
+ "loss": 4.1354,
632
+ "step": 520
633
+ },
634
+ {
635
+ "epoch": 0.14,
636
+ "learning_rate": 9.479e-06,
637
+ "loss": 4.1238,
638
+ "step": 525
639
+ },
640
+ {
641
+ "epoch": 0.14,
642
+ "learning_rate": 9.474000000000001e-06,
643
+ "loss": 4.1232,
644
+ "step": 530
645
+ },
646
+ {
647
+ "epoch": 0.14,
648
+ "learning_rate": 9.469e-06,
649
+ "loss": 4.1252,
650
+ "step": 535
651
+ },
652
+ {
653
+ "epoch": 0.14,
654
+ "learning_rate": 9.464000000000001e-06,
655
+ "loss": 4.0975,
656
+ "step": 540
657
+ },
658
+ {
659
+ "epoch": 0.14,
660
+ "learning_rate": 9.459e-06,
661
+ "loss": 4.1111,
662
+ "step": 545
663
+ },
664
+ {
665
+ "epoch": 0.14,
666
+ "learning_rate": 9.454000000000001e-06,
667
+ "loss": 4.0047,
668
+ "step": 550
669
+ },
670
+ {
671
+ "epoch": 0.15,
672
+ "learning_rate": 9.449e-06,
673
+ "loss": 4.0992,
674
+ "step": 555
675
+ },
676
+ {
677
+ "epoch": 0.15,
678
+ "learning_rate": 9.444000000000001e-06,
679
+ "loss": 4.0734,
680
+ "step": 560
681
+ },
682
+ {
683
+ "epoch": 0.15,
684
+ "learning_rate": 9.439e-06,
685
+ "loss": 4.0809,
686
+ "step": 565
687
+ },
688
+ {
689
+ "epoch": 0.15,
690
+ "learning_rate": 9.434000000000001e-06,
691
+ "loss": 4.101,
692
+ "step": 570
693
+ },
694
+ {
695
+ "epoch": 0.15,
696
+ "learning_rate": 9.429e-06,
697
+ "loss": 4.0662,
698
+ "step": 575
699
+ },
700
+ {
701
+ "epoch": 0.15,
702
+ "learning_rate": 9.424000000000002e-06,
703
+ "loss": 4.1041,
704
+ "step": 580
705
+ },
706
+ {
707
+ "epoch": 0.15,
708
+ "learning_rate": 9.419e-06,
709
+ "loss": 4.0564,
710
+ "step": 585
711
+ },
712
+ {
713
+ "epoch": 0.15,
714
+ "learning_rate": 9.414000000000002e-06,
715
+ "loss": 4.0986,
716
+ "step": 590
717
+ },
718
+ {
719
+ "epoch": 0.16,
720
+ "learning_rate": 9.409000000000001e-06,
721
+ "loss": 4.0309,
722
+ "step": 595
723
+ },
724
+ {
725
+ "epoch": 0.16,
726
+ "learning_rate": 9.404e-06,
727
+ "loss": 4.0605,
728
+ "step": 600
729
+ },
730
+ {
731
+ "epoch": 0.16,
732
+ "learning_rate": 9.399000000000001e-06,
733
+ "loss": 4.0857,
734
+ "step": 605
735
+ },
736
+ {
737
+ "epoch": 0.16,
738
+ "learning_rate": 9.394e-06,
739
+ "loss": 4.1307,
740
+ "step": 610
741
+ },
742
+ {
743
+ "epoch": 0.16,
744
+ "learning_rate": 9.389000000000001e-06,
745
+ "loss": 4.06,
746
+ "step": 615
747
+ },
748
+ {
749
+ "epoch": 0.16,
750
+ "learning_rate": 9.384e-06,
751
+ "loss": 4.0039,
752
+ "step": 620
753
+ },
754
+ {
755
+ "epoch": 0.16,
756
+ "learning_rate": 9.379000000000001e-06,
757
+ "loss": 4.0258,
758
+ "step": 625
759
+ },
760
+ {
761
+ "epoch": 0.17,
762
+ "learning_rate": 9.374e-06,
763
+ "loss": 4.0738,
764
+ "step": 630
765
+ },
766
+ {
767
+ "epoch": 0.17,
768
+ "learning_rate": 9.369e-06,
769
+ "loss": 4.0551,
770
+ "step": 635
771
+ },
772
+ {
773
+ "epoch": 0.17,
774
+ "learning_rate": 9.364e-06,
775
+ "loss": 4.0518,
776
+ "step": 640
777
+ },
778
+ {
779
+ "epoch": 0.17,
780
+ "learning_rate": 9.359e-06,
781
+ "loss": 4.0584,
782
+ "step": 645
783
+ },
784
+ {
785
+ "epoch": 0.17,
786
+ "learning_rate": 9.354e-06,
787
+ "loss": 4.1109,
788
+ "step": 650
789
+ },
790
+ {
791
+ "epoch": 0.17,
792
+ "learning_rate": 9.349e-06,
793
+ "loss": 3.9898,
794
+ "step": 655
795
+ },
796
+ {
797
+ "epoch": 0.17,
798
+ "learning_rate": 9.344e-06,
799
+ "loss": 4.1406,
800
+ "step": 660
801
+ },
802
+ {
803
+ "epoch": 0.17,
804
+ "learning_rate": 9.339e-06,
805
+ "loss": 4.0725,
806
+ "step": 665
807
+ },
808
+ {
809
+ "epoch": 0.18,
810
+ "learning_rate": 9.334e-06,
811
+ "loss": 4.0207,
812
+ "step": 670
813
+ },
814
+ {
815
+ "epoch": 0.18,
816
+ "learning_rate": 9.329e-06,
817
+ "loss": 4.0826,
818
+ "step": 675
819
+ },
820
+ {
821
+ "epoch": 0.18,
822
+ "learning_rate": 9.324000000000001e-06,
823
+ "loss": 4.1059,
824
+ "step": 680
825
+ },
826
+ {
827
+ "epoch": 0.18,
828
+ "learning_rate": 9.319e-06,
829
+ "loss": 3.9967,
830
+ "step": 685
831
+ },
832
+ {
833
+ "epoch": 0.18,
834
+ "learning_rate": 9.314000000000001e-06,
835
+ "loss": 4.0328,
836
+ "step": 690
837
+ },
838
+ {
839
+ "epoch": 0.18,
840
+ "learning_rate": 9.309e-06,
841
+ "loss": 3.9918,
842
+ "step": 695
843
+ },
844
+ {
845
+ "epoch": 0.18,
846
+ "learning_rate": 9.304000000000001e-06,
847
+ "loss": 4.0434,
848
+ "step": 700
849
+ },
850
+ {
851
+ "epoch": 0.18,
852
+ "learning_rate": 9.299e-06,
853
+ "loss": 3.9584,
854
+ "step": 705
855
+ },
856
+ {
857
+ "epoch": 0.19,
858
+ "learning_rate": 9.294000000000001e-06,
859
+ "loss": 4.0551,
860
+ "step": 710
861
+ },
862
+ {
863
+ "epoch": 0.19,
864
+ "learning_rate": 9.289e-06,
865
+ "loss": 3.9684,
866
+ "step": 715
867
+ },
868
+ {
869
+ "epoch": 0.19,
870
+ "learning_rate": 9.284000000000001e-06,
871
+ "loss": 4.0221,
872
+ "step": 720
873
+ },
874
+ {
875
+ "epoch": 0.19,
876
+ "learning_rate": 9.279e-06,
877
+ "loss": 3.985,
878
+ "step": 725
879
+ },
880
+ {
881
+ "epoch": 0.19,
882
+ "learning_rate": 9.274000000000001e-06,
883
+ "loss": 4.0648,
884
+ "step": 730
885
+ },
886
+ {
887
+ "epoch": 0.19,
888
+ "learning_rate": 9.269e-06,
889
+ "loss": 4.0109,
890
+ "step": 735
891
+ },
892
+ {
893
+ "epoch": 0.19,
894
+ "learning_rate": 9.264000000000001e-06,
895
+ "loss": 3.9553,
896
+ "step": 740
897
+ },
898
+ {
899
+ "epoch": 0.2,
900
+ "learning_rate": 9.259e-06,
901
+ "loss": 3.9904,
902
+ "step": 745
903
+ },
904
+ {
905
+ "epoch": 0.2,
906
+ "learning_rate": 9.254000000000002e-06,
907
+ "loss": 3.9719,
908
+ "step": 750
909
+ },
910
+ {
911
+ "epoch": 0.2,
912
+ "learning_rate": 9.249e-06,
913
+ "loss": 3.8973,
914
+ "step": 755
915
+ },
916
+ {
917
+ "epoch": 0.2,
918
+ "learning_rate": 9.244e-06,
919
+ "loss": 3.9936,
920
+ "step": 760
921
+ },
922
+ {
923
+ "epoch": 0.2,
924
+ "learning_rate": 9.239e-06,
925
+ "loss": 3.9498,
926
+ "step": 765
927
+ },
928
+ {
929
+ "epoch": 0.2,
930
+ "learning_rate": 9.234e-06,
931
+ "loss": 3.9557,
932
+ "step": 770
933
+ },
934
+ {
935
+ "epoch": 0.2,
936
+ "learning_rate": 9.229000000000001e-06,
937
+ "loss": 3.9266,
938
+ "step": 775
939
+ },
940
+ {
941
+ "epoch": 0.2,
942
+ "learning_rate": 9.224e-06,
943
+ "loss": 3.9543,
944
+ "step": 780
945
+ },
946
+ {
947
+ "epoch": 0.21,
948
+ "learning_rate": 9.219000000000001e-06,
949
+ "loss": 3.9732,
950
+ "step": 785
951
+ },
952
+ {
953
+ "epoch": 0.21,
954
+ "learning_rate": 9.214e-06,
955
+ "loss": 3.9762,
956
+ "step": 790
957
+ },
958
+ {
959
+ "epoch": 0.21,
960
+ "learning_rate": 9.209000000000001e-06,
961
+ "loss": 4.0695,
962
+ "step": 795
963
+ },
964
+ {
965
+ "epoch": 0.21,
966
+ "learning_rate": 9.204e-06,
967
+ "loss": 3.9869,
968
+ "step": 800
969
+ },
970
+ {
971
+ "epoch": 0.21,
972
+ "learning_rate": 9.199000000000001e-06,
973
+ "loss": 4.0061,
974
+ "step": 805
975
+ },
976
+ {
977
+ "epoch": 0.21,
978
+ "learning_rate": 9.194e-06,
979
+ "loss": 4.0121,
980
+ "step": 810
981
+ },
982
+ {
983
+ "epoch": 0.21,
984
+ "learning_rate": 9.189000000000001e-06,
985
+ "loss": 3.9105,
986
+ "step": 815
987
+ },
988
+ {
989
+ "epoch": 0.21,
990
+ "learning_rate": 9.184e-06,
991
+ "loss": 3.8631,
992
+ "step": 820
993
+ },
994
+ {
995
+ "epoch": 0.22,
996
+ "learning_rate": 9.179000000000001e-06,
997
+ "loss": 3.9498,
998
+ "step": 825
999
+ },
1000
+ {
1001
+ "epoch": 0.22,
1002
+ "learning_rate": 9.174e-06,
1003
+ "loss": 3.9451,
1004
+ "step": 830
1005
+ },
1006
+ {
1007
+ "epoch": 0.22,
1008
+ "learning_rate": 9.169000000000001e-06,
1009
+ "loss": 3.951,
1010
+ "step": 835
1011
+ },
1012
+ {
1013
+ "epoch": 0.22,
1014
+ "learning_rate": 9.164e-06,
1015
+ "loss": 3.9297,
1016
+ "step": 840
1017
+ },
1018
+ {
1019
+ "epoch": 0.22,
1020
+ "learning_rate": 9.159000000000002e-06,
1021
+ "loss": 3.9771,
1022
+ "step": 845
1023
+ },
1024
+ {
1025
+ "epoch": 0.22,
1026
+ "learning_rate": 9.154e-06,
1027
+ "loss": 4.0842,
1028
+ "step": 850
1029
+ },
1030
+ {
1031
+ "epoch": 0.22,
1032
+ "learning_rate": 9.149000000000002e-06,
1033
+ "loss": 3.8865,
1034
+ "step": 855
1035
+ },
1036
+ {
1037
+ "epoch": 0.23,
1038
+ "learning_rate": 9.144000000000001e-06,
1039
+ "loss": 3.9312,
1040
+ "step": 860
1041
+ },
1042
+ {
1043
+ "epoch": 0.23,
1044
+ "learning_rate": 9.139000000000002e-06,
1045
+ "loss": 3.8875,
1046
+ "step": 865
1047
+ },
1048
+ {
1049
+ "epoch": 0.23,
1050
+ "learning_rate": 9.134000000000001e-06,
1051
+ "loss": 4.0389,
1052
+ "step": 870
1053
+ },
1054
+ {
1055
+ "epoch": 0.23,
1056
+ "learning_rate": 9.129000000000002e-06,
1057
+ "loss": 3.9568,
1058
+ "step": 875
1059
+ },
1060
+ {
1061
+ "epoch": 0.23,
1062
+ "learning_rate": 9.124000000000001e-06,
1063
+ "loss": 3.9541,
1064
+ "step": 880
1065
+ },
1066
+ {
1067
+ "epoch": 0.23,
1068
+ "learning_rate": 9.119000000000002e-06,
1069
+ "loss": 3.9092,
1070
+ "step": 885
1071
+ },
1072
+ {
1073
+ "epoch": 0.23,
1074
+ "learning_rate": 9.114000000000001e-06,
1075
+ "loss": 3.9404,
1076
+ "step": 890
1077
+ },
1078
+ {
1079
+ "epoch": 0.23,
1080
+ "learning_rate": 9.109e-06,
1081
+ "loss": 3.9371,
1082
+ "step": 895
1083
+ },
1084
+ {
1085
+ "epoch": 0.24,
1086
+ "learning_rate": 9.104000000000001e-06,
1087
+ "loss": 3.9477,
1088
+ "step": 900
1089
+ },
1090
+ {
1091
+ "epoch": 0.24,
1092
+ "learning_rate": 9.099e-06,
1093
+ "loss": 3.9469,
1094
+ "step": 905
1095
+ },
1096
+ {
1097
+ "epoch": 0.24,
1098
+ "learning_rate": 9.094000000000001e-06,
1099
+ "loss": 3.9191,
1100
+ "step": 910
1101
+ },
1102
+ {
1103
+ "epoch": 0.24,
1104
+ "learning_rate": 9.089e-06,
1105
+ "loss": 3.9527,
1106
+ "step": 915
1107
+ },
1108
+ {
1109
+ "epoch": 0.24,
1110
+ "learning_rate": 9.084e-06,
1111
+ "loss": 3.8934,
1112
+ "step": 920
1113
+ },
1114
+ {
1115
+ "epoch": 0.24,
1116
+ "learning_rate": 9.079e-06,
1117
+ "loss": 3.9773,
1118
+ "step": 925
1119
+ },
1120
+ {
1121
+ "epoch": 0.24,
1122
+ "learning_rate": 9.074e-06,
1123
+ "loss": 3.823,
1124
+ "step": 930
1125
+ },
1126
+ {
1127
+ "epoch": 0.25,
1128
+ "learning_rate": 9.069e-06,
1129
+ "loss": 3.8857,
1130
+ "step": 935
1131
+ },
1132
+ {
1133
+ "epoch": 0.25,
1134
+ "learning_rate": 9.064e-06,
1135
+ "loss": 3.9092,
1136
+ "step": 940
1137
+ },
1138
+ {
1139
+ "epoch": 0.25,
1140
+ "learning_rate": 9.059000000000001e-06,
1141
+ "loss": 3.8338,
1142
+ "step": 945
1143
+ },
1144
+ {
1145
+ "epoch": 0.25,
1146
+ "learning_rate": 9.054e-06,
1147
+ "loss": 3.9457,
1148
+ "step": 950
1149
+ },
1150
+ {
1151
+ "epoch": 0.25,
1152
+ "learning_rate": 9.049000000000001e-06,
1153
+ "loss": 3.8869,
1154
+ "step": 955
1155
+ },
1156
+ {
1157
+ "epoch": 0.25,
1158
+ "learning_rate": 9.044e-06,
1159
+ "loss": 3.8594,
1160
+ "step": 960
1161
+ },
1162
+ {
1163
+ "epoch": 0.25,
1164
+ "learning_rate": 9.039000000000001e-06,
1165
+ "loss": 4.0318,
1166
+ "step": 965
1167
+ },
1168
+ {
1169
+ "epoch": 0.25,
1170
+ "learning_rate": 9.034e-06,
1171
+ "loss": 3.8469,
1172
+ "step": 970
1173
+ },
1174
+ {
1175
+ "epoch": 0.26,
1176
+ "learning_rate": 9.029000000000001e-06,
1177
+ "loss": 3.8367,
1178
+ "step": 975
1179
+ },
1180
+ {
1181
+ "epoch": 0.26,
1182
+ "learning_rate": 9.024e-06,
1183
+ "loss": 3.8814,
1184
+ "step": 980
1185
+ },
1186
+ {
1187
+ "epoch": 0.26,
1188
+ "learning_rate": 9.019000000000001e-06,
1189
+ "loss": 3.8818,
1190
+ "step": 985
1191
+ },
1192
+ {
1193
+ "epoch": 0.26,
1194
+ "learning_rate": 9.014e-06,
1195
+ "loss": 3.908,
1196
+ "step": 990
1197
+ },
1198
+ {
1199
+ "epoch": 0.26,
1200
+ "learning_rate": 9.009000000000001e-06,
1201
+ "loss": 3.9705,
1202
+ "step": 995
1203
+ },
1204
+ {
1205
+ "epoch": 0.26,
1206
+ "learning_rate": 9.004e-06,
1207
+ "loss": 3.9086,
1208
+ "step": 1000
1209
+ },
1210
+ {
1211
+ "epoch": 0.26,
1212
+ "learning_rate": 8.999000000000001e-06,
1213
+ "loss": 3.9795,
1214
+ "step": 1005
1215
+ },
1216
+ {
1217
+ "epoch": 0.26,
1218
+ "learning_rate": 8.994e-06,
1219
+ "loss": 3.8629,
1220
+ "step": 1010
1221
+ },
1222
+ {
1223
+ "epoch": 0.27,
1224
+ "learning_rate": 8.989000000000002e-06,
1225
+ "loss": 3.8287,
1226
+ "step": 1015
1227
+ },
1228
+ {
1229
+ "epoch": 0.27,
1230
+ "learning_rate": 8.984e-06,
1231
+ "loss": 3.8717,
1232
+ "step": 1020
1233
+ },
1234
+ {
1235
+ "epoch": 0.27,
1236
+ "learning_rate": 8.979000000000002e-06,
1237
+ "loss": 3.8865,
1238
+ "step": 1025
1239
+ },
1240
+ {
1241
+ "epoch": 0.27,
1242
+ "learning_rate": 8.974e-06,
1243
+ "loss": 3.8344,
1244
+ "step": 1030
1245
+ },
1246
+ {
1247
+ "epoch": 0.27,
1248
+ "learning_rate": 8.969000000000002e-06,
1249
+ "loss": 3.9541,
1250
+ "step": 1035
1251
+ },
1252
+ {
1253
+ "epoch": 0.27,
1254
+ "learning_rate": 8.964000000000001e-06,
1255
+ "loss": 3.8318,
1256
+ "step": 1040
1257
+ },
1258
+ {
1259
+ "epoch": 0.27,
1260
+ "learning_rate": 8.959000000000002e-06,
1261
+ "loss": 3.9328,
1262
+ "step": 1045
1263
+ },
1264
+ {
1265
+ "epoch": 0.28,
1266
+ "learning_rate": 8.954000000000001e-06,
1267
+ "loss": 3.8621,
1268
+ "step": 1050
1269
+ },
1270
+ {
1271
+ "epoch": 0.28,
1272
+ "learning_rate": 8.949e-06,
1273
+ "loss": 3.7871,
1274
+ "step": 1055
1275
+ },
1276
+ {
1277
+ "epoch": 0.28,
1278
+ "learning_rate": 8.944000000000001e-06,
1279
+ "loss": 3.8988,
1280
+ "step": 1060
1281
+ },
1282
+ {
1283
+ "epoch": 0.28,
1284
+ "learning_rate": 8.939e-06,
1285
+ "loss": 3.8232,
1286
+ "step": 1065
1287
+ },
1288
+ {
1289
+ "epoch": 0.28,
1290
+ "learning_rate": 8.934000000000001e-06,
1291
+ "loss": 3.8816,
1292
+ "step": 1070
1293
+ },
1294
+ {
1295
+ "epoch": 0.28,
1296
+ "learning_rate": 8.929e-06,
1297
+ "loss": 3.8775,
1298
+ "step": 1075
1299
+ },
1300
+ {
1301
+ "epoch": 0.28,
1302
+ "learning_rate": 8.924e-06,
1303
+ "loss": 3.8115,
1304
+ "step": 1080
1305
+ },
1306
+ {
1307
+ "epoch": 0.28,
1308
+ "learning_rate": 8.919e-06,
1309
+ "loss": 3.7941,
1310
+ "step": 1085
1311
+ },
1312
+ {
1313
+ "epoch": 0.29,
1314
+ "learning_rate": 8.914e-06,
1315
+ "loss": 3.8678,
1316
+ "step": 1090
1317
+ },
1318
+ {
1319
+ "epoch": 0.29,
1320
+ "learning_rate": 8.909e-06,
1321
+ "loss": 3.8215,
1322
+ "step": 1095
1323
+ },
1324
+ {
1325
+ "epoch": 0.29,
1326
+ "learning_rate": 8.904e-06,
1327
+ "loss": 3.79,
1328
+ "step": 1100
1329
+ },
1330
+ {
1331
+ "epoch": 0.29,
1332
+ "learning_rate": 8.899e-06,
1333
+ "loss": 3.8092,
1334
+ "step": 1105
1335
+ },
1336
+ {
1337
+ "epoch": 0.29,
1338
+ "learning_rate": 8.894e-06,
1339
+ "loss": 3.79,
1340
+ "step": 1110
1341
+ },
1342
+ {
1343
+ "epoch": 0.29,
1344
+ "learning_rate": 8.889e-06,
1345
+ "loss": 3.8162,
1346
+ "step": 1115
1347
+ },
1348
+ {
1349
+ "epoch": 0.29,
1350
+ "learning_rate": 8.884e-06,
1351
+ "loss": 3.8568,
1352
+ "step": 1120
1353
+ },
1354
+ {
1355
+ "epoch": 0.29,
1356
+ "learning_rate": 8.879000000000001e-06,
1357
+ "loss": 3.867,
1358
+ "step": 1125
1359
+ },
1360
+ {
1361
+ "epoch": 0.3,
1362
+ "learning_rate": 8.874e-06,
1363
+ "loss": 3.7988,
1364
+ "step": 1130
1365
+ },
1366
+ {
1367
+ "epoch": 0.3,
1368
+ "learning_rate": 8.869000000000001e-06,
1369
+ "loss": 3.8088,
1370
+ "step": 1135
1371
+ },
1372
+ {
1373
+ "epoch": 0.3,
1374
+ "learning_rate": 8.864e-06,
1375
+ "loss": 3.7711,
1376
+ "step": 1140
1377
+ },
1378
+ {
1379
+ "epoch": 0.3,
1380
+ "learning_rate": 8.859000000000001e-06,
1381
+ "loss": 3.7242,
1382
+ "step": 1145
1383
+ },
1384
+ {
1385
+ "epoch": 0.3,
1386
+ "learning_rate": 8.854e-06,
1387
+ "loss": 3.8512,
1388
+ "step": 1150
1389
+ },
1390
+ {
1391
+ "epoch": 0.3,
1392
+ "learning_rate": 8.849000000000001e-06,
1393
+ "loss": 3.8945,
1394
+ "step": 1155
1395
+ },
1396
+ {
1397
+ "epoch": 0.3,
1398
+ "learning_rate": 8.844e-06,
1399
+ "loss": 3.8687,
1400
+ "step": 1160
1401
+ },
1402
+ {
1403
+ "epoch": 0.31,
1404
+ "learning_rate": 8.839000000000001e-06,
1405
+ "loss": 3.7533,
1406
+ "step": 1165
1407
+ },
1408
+ {
1409
+ "epoch": 0.31,
1410
+ "learning_rate": 8.834e-06,
1411
+ "loss": 3.8707,
1412
+ "step": 1170
1413
+ },
1414
+ {
1415
+ "epoch": 0.31,
1416
+ "learning_rate": 8.829000000000001e-06,
1417
+ "loss": 3.8086,
1418
+ "step": 1175
1419
+ },
1420
+ {
1421
+ "epoch": 0.31,
1422
+ "learning_rate": 8.824e-06,
1423
+ "loss": 3.7467,
1424
+ "step": 1180
1425
+ },
1426
+ {
1427
+ "epoch": 0.31,
1428
+ "learning_rate": 8.819000000000001e-06,
1429
+ "loss": 3.8078,
1430
+ "step": 1185
1431
+ },
1432
+ {
1433
+ "epoch": 0.31,
1434
+ "learning_rate": 8.814e-06,
1435
+ "loss": 3.7465,
1436
+ "step": 1190
1437
+ },
1438
+ {
1439
+ "epoch": 0.31,
1440
+ "learning_rate": 8.809000000000002e-06,
1441
+ "loss": 3.7955,
1442
+ "step": 1195
1443
+ },
1444
+ {
1445
+ "epoch": 0.31,
1446
+ "learning_rate": 8.804e-06,
1447
+ "loss": 3.8281,
1448
+ "step": 1200
1449
+ },
1450
+ {
1451
+ "epoch": 0.32,
1452
+ "learning_rate": 8.799000000000002e-06,
1453
+ "loss": 3.8035,
1454
+ "step": 1205
1455
+ },
1456
+ {
1457
+ "epoch": 0.32,
1458
+ "learning_rate": 8.794e-06,
1459
+ "loss": 3.7963,
1460
+ "step": 1210
1461
+ },
1462
+ {
1463
+ "epoch": 0.32,
1464
+ "learning_rate": 8.789e-06,
1465
+ "loss": 3.8061,
1466
+ "step": 1215
1467
+ },
1468
+ {
1469
+ "epoch": 0.32,
1470
+ "learning_rate": 8.784000000000001e-06,
1471
+ "loss": 3.777,
1472
+ "step": 1220
1473
+ },
1474
+ {
1475
+ "epoch": 0.32,
1476
+ "learning_rate": 8.779e-06,
1477
+ "loss": 3.7582,
1478
+ "step": 1225
1479
+ },
1480
+ {
1481
+ "epoch": 0.32,
1482
+ "learning_rate": 8.774000000000001e-06,
1483
+ "loss": 3.7725,
1484
+ "step": 1230
1485
+ },
1486
+ {
1487
+ "epoch": 0.32,
1488
+ "learning_rate": 8.769e-06,
1489
+ "loss": 3.7516,
1490
+ "step": 1235
1491
+ },
1492
+ {
1493
+ "epoch": 0.33,
1494
+ "learning_rate": 8.764e-06,
1495
+ "loss": 3.8543,
1496
+ "step": 1240
1497
+ },
1498
+ {
1499
+ "epoch": 0.33,
1500
+ "learning_rate": 8.759e-06,
1501
+ "loss": 3.8566,
1502
+ "step": 1245
1503
+ },
1504
+ {
1505
+ "epoch": 0.33,
1506
+ "learning_rate": 8.754e-06,
1507
+ "loss": 3.7695,
1508
+ "step": 1250
1509
+ },
1510
+ {
1511
+ "epoch": 0.33,
1512
+ "learning_rate": 8.749e-06,
1513
+ "loss": 3.8271,
1514
+ "step": 1255
1515
+ },
1516
+ {
1517
+ "epoch": 0.33,
1518
+ "learning_rate": 8.744e-06,
1519
+ "loss": 3.773,
1520
+ "step": 1260
1521
+ },
1522
+ {
1523
+ "epoch": 0.33,
1524
+ "learning_rate": 8.739e-06,
1525
+ "loss": 3.7283,
1526
+ "step": 1265
1527
+ },
1528
+ {
1529
+ "epoch": 0.33,
1530
+ "learning_rate": 8.734e-06,
1531
+ "loss": 3.7822,
1532
+ "step": 1270
1533
+ },
1534
+ {
1535
+ "epoch": 0.33,
1536
+ "learning_rate": 8.729e-06,
1537
+ "loss": 3.7816,
1538
+ "step": 1275
1539
+ },
1540
+ {
1541
+ "epoch": 0.34,
1542
+ "learning_rate": 8.724e-06,
1543
+ "loss": 3.751,
1544
+ "step": 1280
1545
+ },
1546
+ {
1547
+ "epoch": 0.34,
1548
+ "learning_rate": 8.719e-06,
1549
+ "loss": 3.8271,
1550
+ "step": 1285
1551
+ },
1552
+ {
1553
+ "epoch": 0.34,
1554
+ "learning_rate": 8.714e-06,
1555
+ "loss": 3.7195,
1556
+ "step": 1290
1557
+ },
1558
+ {
1559
+ "epoch": 0.34,
1560
+ "learning_rate": 8.709e-06,
1561
+ "loss": 3.7584,
1562
+ "step": 1295
1563
+ },
1564
+ {
1565
+ "epoch": 0.34,
1566
+ "learning_rate": 8.704e-06,
1567
+ "loss": 3.7889,
1568
+ "step": 1300
1569
+ },
1570
+ {
1571
+ "epoch": 0.34,
1572
+ "learning_rate": 8.699000000000001e-06,
1573
+ "loss": 3.8529,
1574
+ "step": 1305
1575
+ },
1576
+ {
1577
+ "epoch": 0.34,
1578
+ "learning_rate": 8.694e-06,
1579
+ "loss": 3.8166,
1580
+ "step": 1310
1581
+ },
1582
+ {
1583
+ "epoch": 0.34,
1584
+ "learning_rate": 8.689000000000001e-06,
1585
+ "loss": 3.7484,
1586
+ "step": 1315
1587
+ },
1588
+ {
1589
+ "epoch": 0.35,
1590
+ "learning_rate": 8.684e-06,
1591
+ "loss": 3.8014,
1592
+ "step": 1320
1593
+ },
1594
+ {
1595
+ "epoch": 0.35,
1596
+ "learning_rate": 8.679000000000001e-06,
1597
+ "loss": 3.7658,
1598
+ "step": 1325
1599
+ },
1600
+ {
1601
+ "epoch": 0.35,
1602
+ "learning_rate": 8.674e-06,
1603
+ "loss": 3.7834,
1604
+ "step": 1330
1605
+ },
1606
+ {
1607
+ "epoch": 0.35,
1608
+ "learning_rate": 8.669000000000001e-06,
1609
+ "loss": 3.7973,
1610
+ "step": 1335
1611
+ },
1612
+ {
1613
+ "epoch": 0.35,
1614
+ "learning_rate": 8.664e-06,
1615
+ "loss": 3.7607,
1616
+ "step": 1340
1617
+ },
1618
+ {
1619
+ "epoch": 0.35,
1620
+ "learning_rate": 8.659000000000001e-06,
1621
+ "loss": 3.7381,
1622
+ "step": 1345
1623
+ },
1624
+ {
1625
+ "epoch": 0.35,
1626
+ "learning_rate": 8.654e-06,
1627
+ "loss": 3.751,
1628
+ "step": 1350
1629
+ },
1630
+ {
1631
+ "epoch": 0.36,
1632
+ "learning_rate": 8.649000000000001e-06,
1633
+ "loss": 3.7201,
1634
+ "step": 1355
1635
+ },
1636
+ {
1637
+ "epoch": 0.36,
1638
+ "learning_rate": 8.644e-06,
1639
+ "loss": 3.7969,
1640
+ "step": 1360
1641
+ },
1642
+ {
1643
+ "epoch": 0.36,
1644
+ "learning_rate": 8.639000000000001e-06,
1645
+ "loss": 3.7773,
1646
+ "step": 1365
1647
+ },
1648
+ {
1649
+ "epoch": 0.36,
1650
+ "learning_rate": 8.634e-06,
1651
+ "loss": 3.7752,
1652
+ "step": 1370
1653
+ },
1654
+ {
1655
+ "epoch": 0.36,
1656
+ "learning_rate": 8.629e-06,
1657
+ "loss": 3.6992,
1658
+ "step": 1375
1659
+ },
1660
+ {
1661
+ "epoch": 0.36,
1662
+ "learning_rate": 8.624e-06,
1663
+ "loss": 3.651,
1664
+ "step": 1380
1665
+ },
1666
+ {
1667
+ "epoch": 0.36,
1668
+ "learning_rate": 8.619e-06,
1669
+ "loss": 3.7598,
1670
+ "step": 1385
1671
+ },
1672
+ {
1673
+ "epoch": 0.36,
1674
+ "learning_rate": 8.614000000000001e-06,
1675
+ "loss": 3.7367,
1676
+ "step": 1390
1677
+ },
1678
+ {
1679
+ "epoch": 0.37,
1680
+ "learning_rate": 8.609e-06,
1681
+ "loss": 3.6896,
1682
+ "step": 1395
1683
+ },
1684
+ {
1685
+ "epoch": 0.37,
1686
+ "learning_rate": 8.604000000000001e-06,
1687
+ "loss": 3.7732,
1688
+ "step": 1400
1689
+ },
1690
+ {
1691
+ "epoch": 0.37,
1692
+ "learning_rate": 8.599e-06,
1693
+ "loss": 3.7836,
1694
+ "step": 1405
1695
+ },
1696
+ {
1697
+ "epoch": 0.37,
1698
+ "learning_rate": 8.594000000000001e-06,
1699
+ "loss": 3.7854,
1700
+ "step": 1410
1701
+ },
1702
+ {
1703
+ "epoch": 0.37,
1704
+ "learning_rate": 8.589e-06,
1705
+ "loss": 3.701,
1706
+ "step": 1415
1707
+ },
1708
+ {
1709
+ "epoch": 0.37,
1710
+ "learning_rate": 8.584000000000001e-06,
1711
+ "loss": 3.7652,
1712
+ "step": 1420
1713
+ },
1714
+ {
1715
+ "epoch": 0.37,
1716
+ "learning_rate": 8.579e-06,
1717
+ "loss": 3.775,
1718
+ "step": 1425
1719
+ },
1720
+ {
1721
+ "epoch": 0.37,
1722
+ "learning_rate": 8.574000000000001e-06,
1723
+ "loss": 3.7207,
1724
+ "step": 1430
1725
+ },
1726
+ {
1727
+ "epoch": 0.38,
1728
+ "learning_rate": 8.569e-06,
1729
+ "loss": 3.71,
1730
+ "step": 1435
1731
+ },
1732
+ {
1733
+ "epoch": 0.38,
1734
+ "learning_rate": 8.564000000000001e-06,
1735
+ "loss": 3.7359,
1736
+ "step": 1440
1737
+ },
1738
+ {
1739
+ "epoch": 0.38,
1740
+ "learning_rate": 8.559e-06,
1741
+ "loss": 3.6854,
1742
+ "step": 1445
1743
+ },
1744
+ {
1745
+ "epoch": 0.38,
1746
+ "learning_rate": 8.554000000000001e-06,
1747
+ "loss": 3.7342,
1748
+ "step": 1450
1749
+ },
1750
+ {
1751
+ "epoch": 0.38,
1752
+ "learning_rate": 8.549e-06,
1753
+ "loss": 3.6707,
1754
+ "step": 1455
1755
+ },
1756
+ {
1757
+ "epoch": 0.38,
1758
+ "learning_rate": 8.544000000000002e-06,
1759
+ "loss": 3.6596,
1760
+ "step": 1460
1761
+ },
1762
+ {
1763
+ "epoch": 0.38,
1764
+ "learning_rate": 8.539e-06,
1765
+ "loss": 3.6711,
1766
+ "step": 1465
1767
+ },
1768
+ {
1769
+ "epoch": 0.39,
1770
+ "learning_rate": 8.534000000000002e-06,
1771
+ "loss": 3.7279,
1772
+ "step": 1470
1773
+ },
1774
+ {
1775
+ "epoch": 0.39,
1776
+ "learning_rate": 8.529e-06,
1777
+ "loss": 3.7115,
1778
+ "step": 1475
1779
+ },
1780
+ {
1781
+ "epoch": 0.39,
1782
+ "learning_rate": 8.524000000000002e-06,
1783
+ "loss": 3.7139,
1784
+ "step": 1480
1785
+ },
1786
+ {
1787
+ "epoch": 0.39,
1788
+ "learning_rate": 8.519000000000001e-06,
1789
+ "loss": 3.674,
1790
+ "step": 1485
1791
+ },
1792
+ {
1793
+ "epoch": 0.39,
1794
+ "learning_rate": 8.514000000000002e-06,
1795
+ "loss": 3.6191,
1796
+ "step": 1490
1797
+ },
1798
+ {
1799
+ "epoch": 0.39,
1800
+ "learning_rate": 8.509000000000001e-06,
1801
+ "loss": 3.6361,
1802
+ "step": 1495
1803
+ },
1804
+ {
1805
+ "epoch": 0.39,
1806
+ "learning_rate": 8.504000000000002e-06,
1807
+ "loss": 3.7717,
1808
+ "step": 1500
1809
+ },
1810
+ {
1811
+ "epoch": 0.39,
1812
+ "learning_rate": 8.499000000000001e-06,
1813
+ "loss": 3.6355,
1814
+ "step": 1505
1815
+ },
1816
+ {
1817
+ "epoch": 0.4,
1818
+ "learning_rate": 8.494e-06,
1819
+ "loss": 3.8113,
1820
+ "step": 1510
1821
+ },
1822
+ {
1823
+ "epoch": 0.4,
1824
+ "learning_rate": 8.489000000000001e-06,
1825
+ "loss": 3.7465,
1826
+ "step": 1515
1827
+ },
1828
+ {
1829
+ "epoch": 0.4,
1830
+ "learning_rate": 8.484e-06,
1831
+ "loss": 3.8033,
1832
+ "step": 1520
1833
+ },
1834
+ {
1835
+ "epoch": 0.4,
1836
+ "learning_rate": 8.479000000000001e-06,
1837
+ "loss": 3.6867,
1838
+ "step": 1525
1839
+ },
1840
+ {
1841
+ "epoch": 0.4,
1842
+ "learning_rate": 8.474e-06,
1843
+ "loss": 3.7062,
1844
+ "step": 1530
1845
+ },
1846
+ {
1847
+ "epoch": 0.4,
1848
+ "learning_rate": 8.469e-06,
1849
+ "loss": 3.726,
1850
+ "step": 1535
1851
+ },
1852
+ {
1853
+ "epoch": 0.4,
1854
+ "learning_rate": 8.464e-06,
1855
+ "loss": 3.6432,
1856
+ "step": 1540
1857
+ },
1858
+ {
1859
+ "epoch": 0.4,
1860
+ "learning_rate": 8.459e-06,
1861
+ "loss": 3.6943,
1862
+ "step": 1545
1863
+ },
1864
+ {
1865
+ "epoch": 0.41,
1866
+ "learning_rate": 8.454e-06,
1867
+ "loss": 3.6127,
1868
+ "step": 1550
1869
+ },
1870
+ {
1871
+ "epoch": 0.41,
1872
+ "learning_rate": 8.449e-06,
1873
+ "loss": 3.6529,
1874
+ "step": 1555
1875
+ },
1876
+ {
1877
+ "epoch": 0.41,
1878
+ "learning_rate": 8.444e-06,
1879
+ "loss": 3.6063,
1880
+ "step": 1560
1881
+ },
1882
+ {
1883
+ "epoch": 0.41,
1884
+ "learning_rate": 8.439e-06,
1885
+ "loss": 3.7633,
1886
+ "step": 1565
1887
+ },
1888
+ {
1889
+ "epoch": 0.41,
1890
+ "learning_rate": 8.434000000000001e-06,
1891
+ "loss": 3.6211,
1892
+ "step": 1570
1893
+ },
1894
+ {
1895
+ "epoch": 0.41,
1896
+ "learning_rate": 8.429e-06,
1897
+ "loss": 3.6895,
1898
+ "step": 1575
1899
+ },
1900
+ {
1901
+ "epoch": 0.41,
1902
+ "learning_rate": 8.424000000000001e-06,
1903
+ "loss": 3.6152,
1904
+ "step": 1580
1905
+ },
1906
+ {
1907
+ "epoch": 0.42,
1908
+ "learning_rate": 8.419e-06,
1909
+ "loss": 3.6549,
1910
+ "step": 1585
1911
+ },
1912
+ {
1913
+ "epoch": 0.42,
1914
+ "learning_rate": 8.414000000000001e-06,
1915
+ "loss": 3.6502,
1916
+ "step": 1590
1917
+ },
1918
+ {
1919
+ "epoch": 0.42,
1920
+ "learning_rate": 8.409e-06,
1921
+ "loss": 3.5689,
1922
+ "step": 1595
1923
+ },
1924
+ {
1925
+ "epoch": 0.42,
1926
+ "learning_rate": 8.404000000000001e-06,
1927
+ "loss": 3.7002,
1928
+ "step": 1600
1929
+ },
1930
+ {
1931
+ "epoch": 0.42,
1932
+ "learning_rate": 8.399e-06,
1933
+ "loss": 3.5998,
1934
+ "step": 1605
1935
+ },
1936
+ {
1937
+ "epoch": 0.42,
1938
+ "learning_rate": 8.394000000000001e-06,
1939
+ "loss": 3.7164,
1940
+ "step": 1610
1941
+ },
1942
+ {
1943
+ "epoch": 0.42,
1944
+ "learning_rate": 8.389e-06,
1945
+ "loss": 3.6006,
1946
+ "step": 1615
1947
+ },
1948
+ {
1949
+ "epoch": 0.42,
1950
+ "learning_rate": 8.384000000000001e-06,
1951
+ "loss": 3.5586,
1952
+ "step": 1620
1953
+ },
1954
+ {
1955
+ "epoch": 0.43,
1956
+ "learning_rate": 8.379e-06,
1957
+ "loss": 3.6801,
1958
+ "step": 1625
1959
+ },
1960
+ {
1961
+ "epoch": 0.43,
1962
+ "learning_rate": 8.374000000000001e-06,
1963
+ "loss": 3.601,
1964
+ "step": 1630
1965
+ },
1966
+ {
1967
+ "epoch": 0.43,
1968
+ "learning_rate": 8.369e-06,
1969
+ "loss": 3.6344,
1970
+ "step": 1635
1971
+ },
1972
+ {
1973
+ "epoch": 0.43,
1974
+ "learning_rate": 8.364000000000002e-06,
1975
+ "loss": 3.6637,
1976
+ "step": 1640
1977
+ },
1978
+ {
1979
+ "epoch": 0.43,
1980
+ "learning_rate": 8.359e-06,
1981
+ "loss": 3.6357,
1982
+ "step": 1645
1983
+ },
1984
+ {
1985
+ "epoch": 0.43,
1986
+ "learning_rate": 8.354000000000002e-06,
1987
+ "loss": 3.652,
1988
+ "step": 1650
1989
+ },
1990
+ {
1991
+ "epoch": 0.43,
1992
+ "learning_rate": 8.349000000000001e-06,
1993
+ "loss": 3.6439,
1994
+ "step": 1655
1995
+ },
1996
+ {
1997
+ "epoch": 0.44,
1998
+ "learning_rate": 8.344000000000002e-06,
1999
+ "loss": 3.6051,
2000
+ "step": 1660
2001
+ },
2002
+ {
2003
+ "epoch": 0.44,
2004
+ "learning_rate": 8.339000000000001e-06,
2005
+ "loss": 3.6207,
2006
+ "step": 1665
2007
+ },
2008
+ {
2009
+ "epoch": 0.44,
2010
+ "learning_rate": 8.334e-06,
2011
+ "loss": 3.6059,
2012
+ "step": 1670
2013
+ },
2014
+ {
2015
+ "epoch": 0.44,
2016
+ "learning_rate": 8.329000000000001e-06,
2017
+ "loss": 3.7102,
2018
+ "step": 1675
2019
+ },
2020
+ {
2021
+ "epoch": 0.44,
2022
+ "learning_rate": 8.324e-06,
2023
+ "loss": 3.5629,
2024
+ "step": 1680
2025
+ },
2026
+ {
2027
+ "epoch": 0.44,
2028
+ "learning_rate": 8.319000000000001e-06,
2029
+ "loss": 3.6357,
2030
+ "step": 1685
2031
+ },
2032
+ {
2033
+ "epoch": 0.44,
2034
+ "learning_rate": 8.314e-06,
2035
+ "loss": 3.6416,
2036
+ "step": 1690
2037
+ },
2038
+ {
2039
+ "epoch": 0.44,
2040
+ "learning_rate": 8.309e-06,
2041
+ "loss": 3.6572,
2042
+ "step": 1695
2043
+ },
2044
+ {
2045
+ "epoch": 0.45,
2046
+ "learning_rate": 8.304e-06,
2047
+ "loss": 3.6244,
2048
+ "step": 1700
2049
+ },
2050
+ {
2051
+ "epoch": 0.45,
2052
+ "learning_rate": 8.299e-06,
2053
+ "loss": 3.677,
2054
+ "step": 1705
2055
+ },
2056
+ {
2057
+ "epoch": 0.45,
2058
+ "learning_rate": 8.294e-06,
2059
+ "loss": 3.6006,
2060
+ "step": 1710
2061
+ },
2062
+ {
2063
+ "epoch": 0.45,
2064
+ "learning_rate": 8.289e-06,
2065
+ "loss": 3.7182,
2066
+ "step": 1715
2067
+ },
2068
+ {
2069
+ "epoch": 0.45,
2070
+ "learning_rate": 8.284e-06,
2071
+ "loss": 3.6451,
2072
+ "step": 1720
2073
+ },
2074
+ {
2075
+ "epoch": 0.45,
2076
+ "learning_rate": 8.279e-06,
2077
+ "loss": 3.508,
2078
+ "step": 1725
2079
+ },
2080
+ {
2081
+ "epoch": 0.45,
2082
+ "learning_rate": 8.274e-06,
2083
+ "loss": 3.6182,
2084
+ "step": 1730
2085
+ },
2086
+ {
2087
+ "epoch": 0.45,
2088
+ "learning_rate": 8.269e-06,
2089
+ "loss": 3.5447,
2090
+ "step": 1735
2091
+ },
2092
+ {
2093
+ "epoch": 0.46,
2094
+ "learning_rate": 8.264e-06,
2095
+ "loss": 3.5941,
2096
+ "step": 1740
2097
+ },
2098
+ {
2099
+ "epoch": 0.46,
2100
+ "learning_rate": 8.259e-06,
2101
+ "loss": 3.5094,
2102
+ "step": 1745
2103
+ },
2104
+ {
2105
+ "epoch": 0.46,
2106
+ "learning_rate": 8.254000000000001e-06,
2107
+ "loss": 3.5988,
2108
+ "step": 1750
2109
+ },
2110
+ {
2111
+ "epoch": 0.46,
2112
+ "learning_rate": 8.249e-06,
2113
+ "loss": 3.6652,
2114
+ "step": 1755
2115
+ },
2116
+ {
2117
+ "epoch": 0.46,
2118
+ "learning_rate": 8.244000000000001e-06,
2119
+ "loss": 3.5957,
2120
+ "step": 1760
2121
+ },
2122
+ {
2123
+ "epoch": 0.46,
2124
+ "learning_rate": 8.239e-06,
2125
+ "loss": 3.5326,
2126
+ "step": 1765
2127
+ },
2128
+ {
2129
+ "epoch": 0.46,
2130
+ "learning_rate": 8.234000000000001e-06,
2131
+ "loss": 3.5537,
2132
+ "step": 1770
2133
+ },
2134
+ {
2135
+ "epoch": 0.47,
2136
+ "learning_rate": 8.229e-06,
2137
+ "loss": 3.5834,
2138
+ "step": 1775
2139
+ },
2140
+ {
2141
+ "epoch": 0.47,
2142
+ "learning_rate": 8.224000000000001e-06,
2143
+ "loss": 3.5666,
2144
+ "step": 1780
2145
+ },
2146
+ {
2147
+ "epoch": 0.47,
2148
+ "learning_rate": 8.219e-06,
2149
+ "loss": 3.6174,
2150
+ "step": 1785
2151
+ },
2152
+ {
2153
+ "epoch": 0.47,
2154
+ "learning_rate": 8.214000000000001e-06,
2155
+ "loss": 3.5148,
2156
+ "step": 1790
2157
+ },
2158
+ {
2159
+ "epoch": 0.47,
2160
+ "learning_rate": 8.209e-06,
2161
+ "loss": 3.5037,
2162
+ "step": 1795
2163
+ },
2164
+ {
2165
+ "epoch": 0.47,
2166
+ "learning_rate": 8.204000000000001e-06,
2167
+ "loss": 3.6,
2168
+ "step": 1800
2169
+ },
2170
+ {
2171
+ "epoch": 0.47,
2172
+ "learning_rate": 8.199e-06,
2173
+ "loss": 3.5457,
2174
+ "step": 1805
2175
+ },
2176
+ {
2177
+ "epoch": 0.47,
2178
+ "learning_rate": 8.194000000000002e-06,
2179
+ "loss": 3.5021,
2180
+ "step": 1810
2181
+ },
2182
+ {
2183
+ "epoch": 0.48,
2184
+ "learning_rate": 8.189e-06,
2185
+ "loss": 3.509,
2186
+ "step": 1815
2187
+ },
2188
+ {
2189
+ "epoch": 0.48,
2190
+ "learning_rate": 8.184000000000002e-06,
2191
+ "loss": 3.5457,
2192
+ "step": 1820
2193
+ },
2194
+ {
2195
+ "epoch": 0.48,
2196
+ "learning_rate": 8.179e-06,
2197
+ "loss": 3.5449,
2198
+ "step": 1825
2199
+ },
2200
+ {
2201
+ "epoch": 0.48,
2202
+ "learning_rate": 8.174e-06,
2203
+ "loss": 3.5832,
2204
+ "step": 1830
2205
+ },
2206
+ {
2207
+ "epoch": 0.48,
2208
+ "learning_rate": 8.169000000000001e-06,
2209
+ "loss": 3.4852,
2210
+ "step": 1835
2211
+ },
2212
+ {
2213
+ "epoch": 0.48,
2214
+ "learning_rate": 8.164e-06,
2215
+ "loss": 3.6166,
2216
+ "step": 1840
2217
+ },
2218
+ {
2219
+ "epoch": 0.48,
2220
+ "learning_rate": 8.159000000000001e-06,
2221
+ "loss": 3.5248,
2222
+ "step": 1845
2223
+ },
2224
+ {
2225
+ "epoch": 0.48,
2226
+ "learning_rate": 8.154e-06,
2227
+ "loss": 3.5617,
2228
+ "step": 1850
2229
+ },
2230
+ {
2231
+ "epoch": 0.49,
2232
+ "learning_rate": 8.149e-06,
2233
+ "loss": 3.5119,
2234
+ "step": 1855
2235
+ },
2236
+ {
2237
+ "epoch": 0.49,
2238
+ "learning_rate": 8.144e-06,
2239
+ "loss": 3.5475,
2240
+ "step": 1860
2241
+ },
2242
+ {
2243
+ "epoch": 0.49,
2244
+ "learning_rate": 8.139e-06,
2245
+ "loss": 3.5646,
2246
+ "step": 1865
2247
+ },
2248
+ {
2249
+ "epoch": 0.49,
2250
+ "learning_rate": 8.134e-06,
2251
+ "loss": 3.4521,
2252
+ "step": 1870
2253
+ },
2254
+ {
2255
+ "epoch": 0.49,
2256
+ "learning_rate": 8.129e-06,
2257
+ "loss": 3.492,
2258
+ "step": 1875
2259
+ },
2260
+ {
2261
+ "epoch": 0.49,
2262
+ "learning_rate": 8.124e-06,
2263
+ "loss": 3.6187,
2264
+ "step": 1880
2265
+ },
2266
+ {
2267
+ "epoch": 0.49,
2268
+ "learning_rate": 8.119e-06,
2269
+ "loss": 3.4984,
2270
+ "step": 1885
2271
+ },
2272
+ {
2273
+ "epoch": 0.5,
2274
+ "learning_rate": 8.114e-06,
2275
+ "loss": 3.5744,
2276
+ "step": 1890
2277
+ },
2278
+ {
2279
+ "epoch": 0.5,
2280
+ "learning_rate": 8.109e-06,
2281
+ "loss": 3.5514,
2282
+ "step": 1895
2283
+ },
2284
+ {
2285
+ "epoch": 0.5,
2286
+ "learning_rate": 8.104e-06,
2287
+ "loss": 3.4807,
2288
+ "step": 1900
2289
+ },
2290
+ {
2291
+ "epoch": 0.5,
2292
+ "learning_rate": 8.099e-06,
2293
+ "loss": 3.5049,
2294
+ "step": 1905
2295
+ },
2296
+ {
2297
+ "epoch": 0.5,
2298
+ "learning_rate": 8.094e-06,
2299
+ "loss": 3.5098,
2300
+ "step": 1910
2301
+ },
2302
+ {
2303
+ "epoch": 0.5,
2304
+ "learning_rate": 8.089e-06,
2305
+ "loss": 3.4152,
2306
+ "step": 1915
2307
+ },
2308
+ {
2309
+ "epoch": 0.5,
2310
+ "learning_rate": 8.084000000000001e-06,
2311
+ "loss": 3.4281,
2312
+ "step": 1920
2313
+ },
2314
+ {
2315
+ "epoch": 0.5,
2316
+ "learning_rate": 8.079e-06,
2317
+ "loss": 3.5766,
2318
+ "step": 1925
2319
+ },
2320
+ {
2321
+ "epoch": 0.51,
2322
+ "learning_rate": 8.074000000000001e-06,
2323
+ "loss": 3.4908,
2324
+ "step": 1930
2325
+ },
2326
+ {
2327
+ "epoch": 0.51,
2328
+ "learning_rate": 8.069e-06,
2329
+ "loss": 3.5432,
2330
+ "step": 1935
2331
+ },
2332
+ {
2333
+ "epoch": 0.51,
2334
+ "learning_rate": 8.064000000000001e-06,
2335
+ "loss": 3.5154,
2336
+ "step": 1940
2337
+ },
2338
+ {
2339
+ "epoch": 0.51,
2340
+ "learning_rate": 8.059e-06,
2341
+ "loss": 3.4568,
2342
+ "step": 1945
2343
+ },
2344
+ {
2345
+ "epoch": 0.51,
2346
+ "learning_rate": 8.054000000000001e-06,
2347
+ "loss": 3.5314,
2348
+ "step": 1950
2349
+ },
2350
+ {
2351
+ "epoch": 0.51,
2352
+ "learning_rate": 8.049e-06,
2353
+ "loss": 3.5516,
2354
+ "step": 1955
2355
+ },
2356
+ {
2357
+ "epoch": 0.51,
2358
+ "learning_rate": 8.044000000000001e-06,
2359
+ "loss": 3.4271,
2360
+ "step": 1960
2361
+ },
2362
+ {
2363
+ "epoch": 0.52,
2364
+ "learning_rate": 8.039e-06,
2365
+ "loss": 3.4174,
2366
+ "step": 1965
2367
+ },
2368
+ {
2369
+ "epoch": 0.52,
2370
+ "learning_rate": 8.034000000000001e-06,
2371
+ "loss": 3.5492,
2372
+ "step": 1970
2373
+ },
2374
+ {
2375
+ "epoch": 0.52,
2376
+ "learning_rate": 8.029e-06,
2377
+ "loss": 3.568,
2378
+ "step": 1975
2379
+ },
2380
+ {
2381
+ "epoch": 0.52,
2382
+ "learning_rate": 8.024000000000001e-06,
2383
+ "loss": 3.5455,
2384
+ "step": 1980
2385
+ },
2386
+ {
2387
+ "epoch": 0.52,
2388
+ "learning_rate": 8.019e-06,
2389
+ "loss": 3.5598,
2390
+ "step": 1985
2391
+ },
2392
+ {
2393
+ "epoch": 0.52,
2394
+ "learning_rate": 8.014e-06,
2395
+ "loss": 3.5848,
2396
+ "step": 1990
2397
+ },
2398
+ {
2399
+ "epoch": 0.52,
2400
+ "learning_rate": 8.009e-06,
2401
+ "loss": 3.4631,
2402
+ "step": 1995
2403
+ },
2404
+ {
2405
+ "epoch": 0.52,
2406
+ "learning_rate": 8.004e-06,
2407
+ "loss": 3.3873,
2408
+ "step": 2000
2409
+ }
2410
+ ],
2411
+ "max_steps": 10000,
2412
+ "num_train_epochs": 3,
2413
+ "total_flos": 1.5936160471711744e+18,
2414
+ "trial_name": null,
2415
+ "trial_params": null
2416
+ }
checkpoint-2000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f312be11981e62d6d20a9fdb31d7b06ad2b03abd4774fbd90a2c664ffe272e7
3
+ size 4923
checkpoint-2000/zero_to_fp32.py ADDED
@@ -0,0 +1,578 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage == 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dicts.append(torch.load(f, map_location=device))
147
+
148
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
149
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
150
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
151
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
152
+
153
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
154
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
155
+ # use the max of the partition_count to get the dp world_size.
156
+
157
+ if type(world_size) is list:
158
+ world_size = max(world_size)
159
+
160
+ if world_size != total_files:
161
+ raise ValueError(
162
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
163
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
164
+ )
165
+
166
+ # the groups are named differently in each stage
167
+ if zero_stage == 2:
168
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
169
+ elif zero_stage == 3:
170
+ fp32_groups_key = FP32_FLAT_GROUPS
171
+ else:
172
+ raise ValueError(f"unknown zero stage {zero_stage}")
173
+
174
+ if zero_stage == 2:
175
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
176
+ elif zero_stage == 3:
177
+ # if there is more than one param group, there will be multiple flattened tensors - one
178
+ # flattened tensor per group - for simplicity merge them into a single tensor
179
+ #
180
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
181
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
182
+
183
+ fp32_flat_groups = [
184
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
185
+ ]
186
+
187
+ return zero_stage, world_size, fp32_flat_groups
188
+
189
+
190
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
191
+ """
192
+ Returns fp32 state_dict reconstructed from ds checkpoint
193
+
194
+ Args:
195
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
196
+
197
+ """
198
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
199
+
200
+ optim_files = get_optim_files(ds_checkpoint_dir)
201
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
202
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
203
+
204
+ model_files = get_model_state_files(ds_checkpoint_dir)
205
+
206
+ zero_model_states = parse_model_states(model_files)
207
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
208
+
209
+ if zero_stage == 2:
210
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
211
+ elif zero_stage == 3:
212
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
248
+ param_shapes = zero_model_states[0].param_shapes
249
+
250
+ # Reconstruction protocol:
251
+ #
252
+ # XXX: document this
253
+
254
+ if debug:
255
+ for i in range(world_size):
256
+ for j in range(len(fp32_flat_groups[0])):
257
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
258
+
259
+ # XXX: memory usage doubles here (zero2)
260
+ num_param_groups = len(fp32_flat_groups[0])
261
+ merged_single_partition_of_fp32_groups = []
262
+ for i in range(num_param_groups):
263
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
264
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
265
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
266
+ avail_numel = sum(
267
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
268
+
269
+ if debug:
270
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
271
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
272
+ # not asserting if there is a mismatch due to possible padding
273
+ print(f"Have {avail_numel} numels to process.")
274
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
275
+
276
+ # params
277
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
278
+ # out-of-core computing solution
279
+ total_numel = 0
280
+ total_params = 0
281
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
282
+ offset = 0
283
+ avail_numel = full_single_fp32_vector.numel()
284
+ for name, shape in shapes.items():
285
+
286
+ unpartitioned_numel = shape.numel()
287
+ total_numel += unpartitioned_numel
288
+ total_params += 1
289
+
290
+ if debug:
291
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
292
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
293
+ offset += unpartitioned_numel
294
+
295
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
296
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
297
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
298
+ # live optimizer object, so we are checking that the numbers are within the right range
299
+ align_to = 2 * world_size
300
+
301
+ def zero2_align(x):
302
+ return align_to * math.ceil(x / align_to)
303
+
304
+ if debug:
305
+ print(f"original offset={offset}, avail_numel={avail_numel}")
306
+
307
+ offset = zero2_align(offset)
308
+ avail_numel = zero2_align(avail_numel)
309
+
310
+ if debug:
311
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
312
+
313
+ # Sanity check
314
+ if offset != avail_numel:
315
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
316
+
317
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
318
+
319
+
320
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
321
+ state_dict = OrderedDict()
322
+
323
+ # buffers
324
+ buffers = zero_model_states[0].buffers
325
+ state_dict.update(buffers)
326
+ if debug:
327
+ print(f"added {len(buffers)} buffers")
328
+
329
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
330
+
331
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
332
+
333
+ # recover shared parameters
334
+ for pair in zero_model_states[0].shared_params:
335
+ if pair[1] in state_dict:
336
+ state_dict[pair[0]] = state_dict[pair[1]]
337
+
338
+ return state_dict
339
+
340
+
341
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
342
+ remainder = unpartitioned_numel % world_size
343
+ padding_numel = (world_size - remainder) if remainder else 0
344
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
345
+ return partitioned_numel, padding_numel
346
+
347
+
348
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
349
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
350
+ return
351
+
352
+ if debug:
353
+ for i in range(world_size):
354
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
355
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
356
+
357
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
358
+ wanted_params = len(frozen_param_shapes)
359
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
360
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
361
+ print(f'Frozen params: Have {avail_numel} numels to process.')
362
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
363
+
364
+ total_params = 0
365
+ total_numel = 0
366
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
367
+ total_params += 1
368
+ unpartitioned_numel = shape.numel()
369
+ total_numel += unpartitioned_numel
370
+
371
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
372
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
373
+
374
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
375
+
376
+ if debug:
377
+ print(
378
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
379
+ )
380
+
381
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
382
+
383
+
384
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
385
+ param_shapes = zero_model_states[0].param_shapes
386
+ avail_numel = fp32_flat_groups[0].numel() * world_size
387
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
388
+ # param, re-consolidating each param, while dealing with padding if any
389
+
390
+ # merge list of dicts, preserving order
391
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
392
+
393
+ if debug:
394
+ for i in range(world_size):
395
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
396
+
397
+ wanted_params = len(param_shapes)
398
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
399
+ # not asserting if there is a mismatch due to possible padding
400
+ avail_numel = fp32_flat_groups[0].numel() * world_size
401
+ print(f"Trainable params: Have {avail_numel} numels to process.")
402
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
403
+
404
+ # params
405
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
406
+ # out-of-core computing solution
407
+ offset = 0
408
+ total_numel = 0
409
+ total_params = 0
410
+ for name, shape in param_shapes.items():
411
+
412
+ unpartitioned_numel = shape.numel()
413
+ total_numel += unpartitioned_numel
414
+ total_params += 1
415
+
416
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
417
+
418
+ if debug:
419
+ print(
420
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
421
+ )
422
+
423
+ # XXX: memory usage doubles here
424
+ state_dict[name] = torch.cat(
425
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
426
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
427
+ offset += partitioned_numel
428
+
429
+ offset *= world_size
430
+
431
+ # Sanity check
432
+ if offset != avail_numel:
433
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
434
+
435
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
436
+
437
+
438
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
439
+ state_dict = OrderedDict()
440
+
441
+ # buffers
442
+ buffers = zero_model_states[0].buffers
443
+ state_dict.update(buffers)
444
+ if debug:
445
+ print(f"added {len(buffers)} buffers")
446
+
447
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
448
+
449
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
450
+
451
+ # recover shared parameters
452
+ for pair in zero_model_states[0].shared_params:
453
+ if pair[1] in state_dict:
454
+ state_dict[pair[0]] = state_dict[pair[1]]
455
+
456
+ return state_dict
457
+
458
+
459
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
460
+ """
461
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
462
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
463
+ via a model hub.
464
+
465
+ Args:
466
+ - ``checkpoint_dir``: path to the desired checkpoint folder
467
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
468
+
469
+ Returns:
470
+ - pytorch ``state_dict``
471
+
472
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
473
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
474
+ the checkpoint.
475
+
476
+ A typical usage might be ::
477
+
478
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
479
+ # do the training and checkpoint saving
480
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
481
+ model = model.cpu() # move to cpu
482
+ model.load_state_dict(state_dict)
483
+ # submit to model hub or save the model to share with others
484
+
485
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
486
+ application. i.e. you will need to re-initialize the deepspeed engine, since
487
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
488
+
489
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
490
+
491
+ """
492
+ if tag is None:
493
+ latest_path = os.path.join(checkpoint_dir, 'latest')
494
+ if os.path.isfile(latest_path):
495
+ with open(latest_path, 'r') as fd:
496
+ tag = fd.read().strip()
497
+ else:
498
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
499
+
500
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
501
+
502
+ if not os.path.isdir(ds_checkpoint_dir):
503
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
504
+
505
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
506
+
507
+
508
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
509
+ """
510
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
511
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
512
+
513
+ Args:
514
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
515
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
516
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
517
+ """
518
+
519
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
520
+ print(f"Saving fp32 state dict to {output_file}")
521
+ torch.save(state_dict, output_file)
522
+
523
+
524
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
525
+ """
526
+ 1. Put the provided model to cpu
527
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
528
+ 3. Load it into the provided model
529
+
530
+ Args:
531
+ - ``model``: the model object to update
532
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
533
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
534
+
535
+ Returns:
536
+ - ``model`: modified model
537
+
538
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
539
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
540
+ conveniently placed for you in the checkpoint folder.
541
+
542
+ A typical usage might be ::
543
+
544
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
545
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
546
+ # submit to model hub or save the model to share with others
547
+
548
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
549
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
550
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
551
+
552
+ """
553
+ logger.info(f"Extracting fp32 weights")
554
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
555
+
556
+ logger.info(f"Overwriting model with fp32 weights")
557
+ model = model.cpu()
558
+ model.load_state_dict(state_dict, strict=False)
559
+
560
+ return model
561
+
562
+
563
+ if __name__ == "__main__":
564
+
565
+ parser = argparse.ArgumentParser()
566
+ parser.add_argument("checkpoint_dir",
567
+ type=str,
568
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
569
+ parser.add_argument(
570
+ "output_file",
571
+ type=str,
572
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
573
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
574
+ args = parser.parse_args()
575
+
576
+ debug = args.debug
577
+
578
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)