File size: 1,739 Bytes
d7872e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
tags:
- generated_from_trainer
model-index:
- name: longt5_xl_govreport_4096_memsum_e20
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# longt5_xl_govreport_4096_memsum_e20

This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4413

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 10.0

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.4496        | 1.0   | 68   | 1.8158          |
| 0.3462        | 1.99  | 136  | 1.7510          |
| 0.3171        | 2.99  | 204  | 1.8821          |
| 0.2761        | 3.99  | 272  | 2.0322          |
| 0.2338        | 5.0   | 341  | 2.0432          |
| 0.1998        | 6.0   | 409  | 2.2008          |
| 0.1512        | 6.99  | 477  | 2.3444          |
| 0.1618        | 7.99  | 545  | 2.3309          |
| 0.1392        | 8.99  | 613  | 2.4437          |
| 0.1271        | 9.97  | 680  | 2.4413          |


### Framework versions

- Transformers 4.34.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3