larskjeldgaard commited on
Commit
ac6cadf
1 Parent(s): df438f0
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -12,14 +12,14 @@ widget:
12
  # Danish BERT fine-tuned for Sentiment Analysis (Polarity)
13
  This model detects polarity ('positive', 'neutral', 'negative') of danish texts.
14
 
15
- It is trained on Tweets, that have been annotated by [Alexandra Institute](https://github.com/alexandrainst).
16
 
17
  Here is an example on how to load the model in PyTorch using the [🤗Transformers](https://github.com/huggingface/transformers) library:
18
 
19
  ```python
20
- from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
21
  tokenizer = AutoTokenizer.from_pretrained("larskjeldgaard/senda")
22
- model = AutoModelForTokenClassification.from_pretrained("larskjeldgaard/senda")
23
 
24
  # create 'senda' sentiment analysis pipeline
25
  senda_pipeline = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer)
 
12
  # Danish BERT fine-tuned for Sentiment Analysis (Polarity)
13
  This model detects polarity ('positive', 'neutral', 'negative') of danish texts.
14
 
15
+ It is trained and tested on Tweets annotated by [Alexandra Institute](https://github.com/alexandrainst).
16
 
17
  Here is an example on how to load the model in PyTorch using the [🤗Transformers](https://github.com/huggingface/transformers) library:
18
 
19
  ```python
20
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
21
  tokenizer = AutoTokenizer.from_pretrained("larskjeldgaard/senda")
22
+ model = AutoModelForSequenceClassification.from_pretrained("larskjeldgaard/senda")
23
 
24
  # create 'senda' sentiment analysis pipeline
25
  senda_pipeline = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer)