l3cube-pune commited on
Commit
4f8ca82
1 Parent(s): bcc1c2f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -61
README.md CHANGED
@@ -1,18 +1,73 @@
1
  ---
2
  pipeline_tag: sentence-similarity
 
3
  tags:
4
  - sentence-transformers
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
8
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
 
11
- # {MODEL_NAME}
 
 
 
 
 
12
 
13
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
15
- <!--- Describe your model here -->
 
 
 
 
 
 
 
 
 
16
 
17
  ## Usage (Sentence-Transformers)
18
 
@@ -70,60 +125,3 @@ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']
70
  print("Sentence embeddings:")
71
  print(sentence_embeddings)
72
  ```
73
-
74
-
75
-
76
- ## Evaluation Results
77
-
78
- <!--- Describe how your model was evaluated -->
79
-
80
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
81
-
82
-
83
- ## Training
84
- The model was trained with the parameters:
85
-
86
- **DataLoader**:
87
-
88
- `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 88058 with parameters:
89
- ```
90
- {'batch_size': 32}
91
- ```
92
-
93
- **Loss**:
94
-
95
- `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
96
- ```
97
- {'scale': 20.0, 'similarity_fct': 'cos_sim'}
98
- ```
99
-
100
- Parameters of the fit()-Method:
101
- ```
102
- {
103
- "epochs": 1,
104
- "evaluation_steps": 0,
105
- "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
106
- "max_grad_norm": 1,
107
- "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
108
- "optimizer_params": {
109
- "lr": 2e-05
110
- },
111
- "scheduler": "WarmupLinear",
112
- "steps_per_epoch": null,
113
- "warmup_steps": 8805,
114
- "weight_decay": 0.01
115
- }
116
- ```
117
-
118
-
119
- ## Full Model Architecture
120
- ```
121
- SentenceTransformer(
122
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
123
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
124
- )
125
- ```
126
-
127
- ## Citing & Authors
128
-
129
- <!--- Describe where people can find more information -->
 
1
  ---
2
  pipeline_tag: sentence-similarity
3
+ license: cc-by-4.0
4
  tags:
5
  - sentence-transformers
6
  - feature-extraction
7
  - sentence-similarity
8
  - transformers
9
+ language:
10
+ - multilingual
11
+ - en
12
+ - hi
13
+ - mr
14
+ - kn
15
+ - ta
16
+ - te
17
+ - ml
18
+ - gu
19
+ - or
20
+ - pa
21
+ - bn
22
+ widget:
23
+ - source_sentence: दिवाळी आपण मोठ्या उत्साहाने साजरी करतो
24
+ sentences:
25
+ - दिवाळी आपण आनंदाने साजरी करतो
26
+ - दिवाळी हा दिव्यांचा सण आहे
27
+ example_title: Monolingual- Marathi
28
+ - source_sentence: हम दीपावली उत्साह के साथ मनाते हैं
29
+ sentences:
30
+ - हम दीपावली खुशियों से मनाते हैं
31
+ - दिवाली रोशनी का त्योहार है
32
+ example_title: Monolingual- Hindi
33
+ - source_sentence: અમે ઉત્સાહથી દિવાળી ઉજવીએ છીએ
34
+ sentences:
35
+ - દિવાળી આપણે ખુશીઓથી ઉજવીએ છીએ
36
+ - દિવાળી એ રોશનીનો તહેવાર છે
37
+ example_title: Monolingual- Gujarati
38
+ - source_sentence: आम्हाला भारतीय असल्याचा अभिमान आहे
39
+ sentences:
40
+ - हमें भारतीय होने पर गर्व है
41
+ - భారతీయులమైనందుకు గర్విస్తున్నాం
42
+ - અમને ભારતીય હોવાનો ગર્વ છે
43
+ example_title: Cross-lingual 1
44
+ - source_sentence: ਬਾਰਿਸ਼ ਤੋਂ ਬਾਅਦ ਬਗੀਚਾ ਸੁੰਦਰ ਦਿਖਾਈ ਦਿੰਦਾ ਹੈ
45
+ sentences:
46
+ - മഴയ്ക്ക് ശേഷം പൂന്തോട്ടം മനോഹരമായി കാണപ്പെടുന്നു
47
+ - ବର୍ଷା ପରେ ବଗିଚା ସୁନ୍ଦର ଦେଖାଯାଏ |
48
+ - बारिश के बाद बगीचा सुंदर दिखता है
49
+ example_title: Cross-lingual 2
50
  ---
51
 
52
+ # IndicSBERT
53
+
54
+ This is a MuRIL model (google/muril-base-cased) trained on the NLI dataset of ten major Indian Languages. <br>
55
+ The single model works for Hindi, Marathi, Kannada, Tamil, Telugu, Gujarati, Oriya, Punjabi, Malayalam, and Bengali.
56
+ The model also has cross-lingual capabilities. <br>
57
+ Released as a part of project MahaNLP: https://github.com/l3cube-pune/MarathiNLP <br>
58
 
59
+ A better sentence similarity model (fine-tuned version of this model) is shared here: https://huggingface.co/l3cube-pune/indic-sentence-similarity-sbert <br>
60
 
61
+ More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2211.11187)
62
+
63
+ ```
64
+ @article{joshi2022l3cubemahasbert,
65
+ title={L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi},
66
+ author={Joshi, Ananya and Kajale, Aditi and Gadre, Janhavi and Deode, Samruddhi and Joshi, Raviraj},
67
+ journal={arXiv preprint arXiv:2211.11187},
68
+ year={2022}
69
+ }
70
+ ```
71
 
72
  ## Usage (Sentence-Transformers)
73
 
 
125
  print("Sentence embeddings:")
126
  print(sentence_embeddings)
127
  ```