l3cube-pune commited on
Commit
a1b3a00
1 Parent(s): 662102d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -55
README.md CHANGED
@@ -5,10 +5,15 @@ tags:
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
 
 
8
 
9
  ---
10
 
11
- # {MODEL_NAME}
 
 
 
12
 
13
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
@@ -68,59 +73,6 @@ print("Sentence embeddings:")
68
  print(sentence_embeddings)
69
  ```
70
 
71
-
72
-
73
- ## Evaluation Results
74
-
75
- <!--- Describe how your model was evaluated -->
76
-
77
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
78
-
79
-
80
- ## Training
81
- The model was trained with the parameters:
82
-
83
- **DataLoader**:
84
-
85
- `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 32049 with parameters:
86
- ```
87
- {'batch_size': 8}
88
- ```
89
-
90
- **Loss**:
91
-
92
- `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
93
- ```
94
- {'scale': 20.0, 'similarity_fct': 'cos_sim'}
95
- ```
96
-
97
- Parameters of the fit()-Method:
98
- ```
99
- {
100
- "epochs": 1,
101
- "evaluation_steps": 0,
102
- "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
103
- "max_grad_norm": 1,
104
- "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
105
- "optimizer_params": {
106
- "lr": 2e-05
107
- },
108
- "scheduler": "WarmupLinear",
109
- "steps_per_epoch": null,
110
- "warmup_steps": 3204,
111
- "weight_decay": 0.01
112
- }
113
- ```
114
-
115
-
116
- ## Full Model Architecture
117
- ```
118
- SentenceTransformer(
119
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
120
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
121
- )
122
- ```
123
-
124
  ## Citing & Authors
125
 
126
- <!--- Describe where people can find more information -->
 
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
8
+ license: cc-by-4.0
9
+ language: hi
10
 
11
  ---
12
 
13
+ # {HindSBERT}
14
+
15
+ This is a HindBERT model (l3cube-pune/hindi-bert-v2) trained on the NLI dataset.
16
+ Released as a part of project MahaNLP: https://github.com/l3cube-pune/MarathiNLP
17
 
18
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
19
 
 
73
  print(sentence_embeddings)
74
  ```
75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
  ## Citing & Authors
77
 
78
+ This will be updated soon, refer to the project page for now.